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Abstract
We consider a quarter wave coplanar microwave cavity terminated to ground via a
superconducting quantum interference device. By modulating the flux through the
loop, the cavity frequency is modulated. The flux is varied at twice the cavity
frequency implementing a parametric driving of the cavity field. The cavity field also
exhibits a large effective nonlinear susceptibility modelled as an effective Kerr
nonlinearity, and is also driven by a detuned linear drive. We show that the
semi-classical model corresponding to this system exhibits a fixed point bifurcation at
a particular threshold of parametric pumping power. We show the quantum
signature of this bifurcation in the dissipative quantum system. We further linearise
about the below threshold classical steady state and consider it to act as a bifurcation
amplifier, calculating gain and noise spectra for the corresponding small signal
regime. Furthermore, we use a phase space technique to analytically solve for the
exact quantum steady state. We use this solution to calculate the exact small signal
gain of the amplifier.

Keywords: superconducting circuit; parametric amplifier; quantum noise

1 Introduction
Superconducting circuit quantum electrodynamics (circuit QED) [] is increasingly being
used to study systems in the quantum regime. This experimental context sees a supercon-
ducting coplanar waveguide act as a microwave cavity, in contrast to the optical frequency
cavities of traditional cavity quantum electrodynamics (cavity QED). The microwave res-
onator ismade fromaluminiumon a silicon substrate, and Josephson junctions are created
by allowing the aluminium to oxidise before adding more aluminium. Such devices are
placed in a dilution refrigerator, and experiments take place at cryogenic temperatures.
Such low temperatures, close to the quantum ground state, allow quantum mechanical
phenomena to become manifest. Recent engineering progress means that fabrication of
these devices is possible [].
In recent experiments at Chalmers [], a quarter wave coplanar microwave cavity is

terminated to ground via one or more superconducting quantum interference devices
(SQUIDs), see Figure . By modulating the flux through the loop, the cavity frequency can
be modulated. If the flux is varied at twice the cavity frequency this implements a para-
metric driving of the cavity field. The cavity field also exhibits a large effective nonlinear
susceptibility that can be modelled as an intensity dependent phase shift [].
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Figure 1 Schematic of the system under
consideration in this paper. A schematic of the
system under consideration. A superconducting
microwave cavity of frequency ωc has an effective
Kerr nonlinearity χ , due primarily to the SQUID-loop
connecting it to ground. It is driven both by a linear
drive of amplitude ε at a detuning from the cavity of
Δ, and also by a parametric drive at twice the cavity
frequency at an amplitude κ .

This paper is structured as follows. In Section  we introduce the nonlinear microwave
system considered in this paper. We establish a description in the form of a Markov mas-
ter equation, one term of which being an effective Hamiltonian we derive. We also give
the input-output formulation of the microwave system. In Section  we present a detailed
analysis of the fixed point structure of the nonlinear microwave system in a semi-classical
description, including bifurcation of the fixed points. We include dissipation of the mi-
crowave mode. In Section  we look at the steady state of the quantum system. This is
done in a phase space representation based on the positive P-representation, both an-
alytically, and numerically. We look for signatures of the semi-classical bifurcations. In
Section  we analytically compute and plot the small signal gain. Then, in Section  we
linearise the model and extract gain and noise spectra up to the threshold defined by the
semi-classical bifurcation. Finally in Section  we summarise our results.
A similarmodel to that considered here has been given byWustmann and Shumeiko [].

Their discussion of the semiclassical steady states and fixed point structure parallels the
discussion here but gives a more detailed description of the semiclassical dynamics. They
also discuss the quantumnoise features of themodel using a linearised quantumLangevin
approach. In addition to a linearised analysis of the gain and signal-to-noise ratio, we
give an exact steady state solution for the quantum master equation using the positive
P-representation. The steady state behaviour of the model we describe has been experi-
mentally observed by Wilson et al. [].

2 The dissipative Cassinian oscillator model
2.1 Master equation
We consider a superconductingmicrowave resonator connected through a superconduct-
ing quantum interference device (SQUID) loop to ground. The SQUID loop consists of
two separated Josephson junctions; a magnetic flux can then be applied to loop to change
the effective resonant frequency of the cavity []. The SQUID also induces a significant
quartic nonlinearity. Following Wallquist et al. [] we describe the integrated cavity +
SQUID system in terms of an equivalent circuit composed of a capacitor and a nonlin-
ear inductor. The Hamiltonian for one mode of the cavity field may be written in terms of
this effective nonlinear oscillator as []

H = ECn + ELφ
 + λφ, ()

where EC = (e)
C represents the charging energy of the effective LC oscillator while n is the

number of elementary charges on the capacitor, EL = �


(e)L represents the inductive en-
ergy of the effective oscillator, while φ represents the flux though the equivalent inductor
and λ represents the inductive nonlinearity. This depends on the inductive energy scale
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and on themode function of the cavity field λ = ELB, where B is a geometric factor. Further
details are given in Wallquist et al. give [].
The systemmay be quantised by introducing the bosonic raising and lowering operators,

defined in terms of the canonical variables of the cavity field as,

φ̂ =
(

EC

EL

) 
 (
â + â†

)
,

n̂ = –i
(

EL

EC

) 
 (
â – â†

)
,

()

where ψ̂ and n̂ are the average phase across the junctions and charge on the junctions, re-
spectively and C and L are the effective lumped capacitance and inductance, respectively,
of the equivalent circuit for the cavity in terms of which the cavity resonant frequency is
give by ωc = √

LC . The total Hamiltonian, including the coherent driving and the paramet-
ric driving are then given by

H = �ωcâ†â + �
(
ε∗âeiωDt + εâ†e–iωDt

)
+ �χ â†â +

�


(
κ∗âeiωDt + κâ†e–iωDt

)
, ()

where ωc is the cavity frequency, ε = |ε|eiυ represents the coherent driving strength, κ

represents the parametric driving strength, ωD is the coherent driving frequency and we
have assumed that the parametric driving is at twice the coherent driving frequency and
υ is the phase difference between the coherent driving and the parametric driving as we
have taken the phase of the parametric driving term as zero. In Section  we consider
coherent homodyne detection of the cavity output. This means there is another phase in
this problem; the phase choice for the local oscillator which may not be in phase with
either the coherent or the parametric driving. The term proportional to χ represents a
nonlinear (quartic) phase shift that arises from the nonlinear inductance of the SQUID
loop. Quartic non-linearities in oscillators have been discussed in [, ]; parametric terms
in the nano-electromechanical context have been discussed in [–].
For a realistic device we adopt a dissipative model. We model the microwave cavity res-

onator as being damped in a zero temperature heat bath. Such a model for the bath is
certainly justified as the typical microwave cavity is at mK temperature and thus the mean
excitation photon number is very close to zero []. The amplitude decay rate for the mi-
crowave cavity is γ . We then describe the dissipative dynamics with the master equation
(with weak damping and the rotating wave approximation for the system-environment
couplings). In an interaction picture at the coherent driving frequency this is

dρ̂

dt
= –

i
�
[Ĥ, ρ̂ ] + γ

(
âρ̂ â† – â†âρ̂ – ρ̂ â†â

)
, ()

where ρ̂ is the density matrix of the microwave cavity, and Ĥ is the Hamiltonian in an
interaction picture in a rotating frame with respect to the linear driving frequency. We
have made the rotating wave approximation by ignoring terms with frequency ωD or
above. We thus have

Ĥ = �Δâ†â + �
(
ε∗â + εâ†

)
+
�


(
κ∗â + κâ†) + �χ


â†â, ()
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whereΔ = ωc –ωD. In the absence of damping, classical trajectories arising from the para-
metric and nonlinear portion of this Hamiltonian are the ovals of Cassini, and that system
is hence sometimes described as the ‘Cassinian’ oscillator; the quantum version of that
part of the Hamiltonian system has been previously studied by Wielinga et al. [] and
more recently by Dykman and his collaborators [].
The semi-classical dynamics and the exact quantum steady state can be found using

the complex P-function of Drummond and Gardiner []. In this approach the density
operator in terms of the off diagonal projectors onto oscillator coherent states

ρ̂ (t) =
∫

dα dβ P(α,β , t)
|α〉〈β∗|
〈β∗|α〉 . ()

This function determines the normally ordered moments by

〈
â†mân〉 = ∫

dα dβ P(α,β , t)αnβm. ()

It may seem surprising at first sight to notice that the Positive P-function has support in
a phase space with twice as many canonical variables as the corresponding classical prob-
lem.There is a direct physical interpretation of the extra variables based on ameasurement
model in which there are twice as many readout channels for the canonical phase space
variable []. This is required if the distributions are to give normally ordered moments
directly via integration. In [] a direct implementation using circuit QED of these addi-
tional channels is demonstrated and connection is made to the stationary normal ordered
moments.
The master equation can then be converted into a Fokker-Planck like equation for the

P-function,

∂P(α,β)
∂t

=
{
∂α

[
(γ + iΔ)α + iε + iχβα + iκβ

]
+ ∂β

[
(γ – iΔ)β – iε∗ – iχαβ – iκ∗α

]
+ ∂

αα

[
–i



(
κ + χα)] + ∂

ββ

[
i


(
κ∗ + χβ)]}

, ()

where ∂α = ∂
∂α

and ∂
αα = ∂

∂α ∂α
etc. The corresponding stochastic differential equations are

dα = –(γ + iΔ)αdt – iεdt – i
(
χα + κ

)
βdt +

[
–i

(
κ + χα)] 

 dz,

dβ = –(γ – iΔ)βdt + iε∗dt + i
(
χβ + κ∗)αdt + [

i
(
κ∗ + χβ)] 

 dz.
()

The semi-classical equations are obtained by setting β = α∗ in the drift term and ignoring
the diffusion term, and are thus

dα

dt
= –

(
γ + iΔ + iχ |α|)α – iε – iκα∗, ()

from which it is apparent that the nonlinearity appears as a nonlinear detuning. This en-
sures that the instability in the χ =  model when κ = γ does not arise.
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3 Semi-classical fixed point structure
3.1 No coherent driving, ε = 0
We first consider the case of no driving field ε = . The semi-classical equations of motion
() are then given by

dα

dt
= –(γ + iΔ)α – iχα|α| – iκα∗. ()

The semi-classical steady states, α =
√neiθ , are given by n̄ = , and

n̄ = –Δ′ ±
√(

κ ′) – ,

sin(θ) = –

κ ′ ,

()

where we have defined the scaled variables

n̄ =
χ

γ
n,

κ ′ =
κ

γ
,

Δ′ =
Δ

γ
.

()

In order to determine the stability of the fixed points, we linearise the equations of mo-
tion around the fixed points. Thus we have the semi-classical linearised equation of mo-
tion for δα = α – α and δα∗ = α∗ – α∗

[
d(δα)
dt

d(δα∗)
dt

]
≈Mαα∗

[
δα

δα∗

]
, ()

where

Mαα∗ =

[
–γ – iΔ – iχ |α| –iχα

 – iκ
iχ (α∗

) + iκ –γ + iΔ + iχ |α|
]
. ()

In the limit of no parametric pumping (κ = ), this Jacobian matches the result obtained
by Babourina-Brooks et al. in []. Stability of the fixed point requires all the eigenvalues of
the Jacobian to have a real part less than or equal to zero []. A real part of exactly zero
indicates marginal stability in that parameter direction, where the fixed point is neither
attractive nor repulsive. Real parts strictly less than zero are attracting fixed points which
draw in nearby regions in phase space. In general, stability may depend on more coupling
parameter combinations than those which define the fixed points.
The origin is a fixed point for all parameter values. Indeed, the origin is the only fixed

point for κ < γ , the ‘below threshold’ regime. This fixed point is stable for κ < γ  + Δ.
Four additional fixed points occur as antipodal pairs for κ > γ ; the ‘above threshold’
regime. The first additional pair of fixed points, which we will call the ‘stable pair’, and
are given by

(n̄, θ) =
(
–Δ′ +

√(
κ ′) – ,–π + arccscκ ′), ()
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exists for Δ <
√
(κ) – γ , and is always stable. The second additional pair of fixed points,

which we will call the ‘unstable pair’

(n̄, θ) =
(
–Δ′ –

√(
κ ′) – ,– arccscκ ′), ()

exists forΔ < –
√
(ka) – γ , and is always unstable.We note that the unstable pair of fixed

points can only exist for negative detuning, and that whenever the unstable pair of fixed
points exists, the first pair of fixed points exists also. Also, we note that for ε = , â → –â
is a symmetry of the system, and thus pairs of antipodal fixed points are the expected
semi-classical result.Weplot the radial and angular components of the semi-classical fixed
points in Figure . The colour in these plots shows the stability.
The bifurcating behaviour of the semi-classical steady state is depicted in the ‘phase di-

gram’ of Figure . There are two qualitatively different transitions that can take place in

Figure 2 Radial and angular components of the semi-classical fixed points. (a) Radial n̄0 =
χ
γ n0 and

(b) angular θ0 components of the semi-classical fixed points. The existence and components of the
semi-classical fixed points are functions of the two non-dimensional ratios of the parametric pumping
magnitude κ , detuning Δ, and dissipation rate γ of the system: κ ′ = κ

γ and Δ′ = Δ
γ . Note then that all

non-zero values in (a) represent not just a single fixed point, but a pair of antipodal fixed points. The fixed
point at origin is not plotted in (b) for the obvious reason that its angular component is undefined. The
colours of the plot indicate the stability: green indicates stable fixed points and checkered red indicates
unstable fixed points. Visible in this diagram is a clear semi-classical threshold where the origin becomes
unstable, and above which the stable semi-classical fixed points separate.

Figure 3 ‘Phase diagram’ of the semi-classical system. The ‘phase
diagram’ of the semi-classical system. The existence and components
of the semi-classical fixed points are functions of the two
non-dimensional ratios of the parametric pumping magnitude κ ,
detuning Δ, and dissipation rate γ of the system: κ ′ = κ

γ and Δ′

= Δ
γ . We also show the parameter regimes chosen for numerically

computing the quantum steady state. There are three different classes
of fixed points: the origin is a fixed point for all parameter values
(stable in the green and striped blue regions, and unstable in the
checkered red region); a stable pair of antipodal fixed points exists for
‘above threshold’ parametric pumping (the striped blue and
checkered red regions); and an unstable pair exists for small values of
‘above threshold’ parametric pumping if the detuning Δ is negative
(the striped blue region only). The semi-classical steady states at the
specific various black circles and crosses are depicted in Figures 4
and 5 respectively. These are for comparison with the quantum steady
states discussed in Section 4 and depicted in Figures 4 and 5.
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Figure 4 Semi-classical steady states of the
microwave system for different regions of the phase
diagram. Semi-classical steady states of the microwave
system for different regions of the ‘phase diagram’ in
Figure 3. These nine plots show the semi-classical fixed
points that correspond to the parameters of the nine
black circles in Figure 3. Specifically, from top-left to
bottom-right, moving form left to right, then top to
bottom, these parameter values are: (κ ′ ,Δ′) = (0, 10), (5,
10), (0, 0), (5, 0), (0, –10), and (5, –10). The colours indicate
stability; the green circle markers are stable fixed points,
and the red cross markers are unstable fixed points.
Clearly visible are the qualitative differences in each
region separated by the semi-classical bifurcations. These
semi-classical fixed points can be compared with the
quantum steady state Wigner functions for the same set
of parameters in Figure 6.

the semi-classical system as it moves from being ‘below threshold’ to ‘above threshold’.
First, for positive detuning (Δ > ), the threshold parametric pumping κ ′ =  is effectively
increased by the detuning to κ ′ =

√
 +Δ′ (the solid green/checkered red boundary in Fig-

ure . At this threshold, the semi-classical system undergoes a supercritical pitchfork bi-
furcation where the stable origin goes unstable, and the stable pair of fixed points emerges
from the origin and grows in separation with increasing parametric pumping (the check-
ered red region in the upper half-plane in Figure ). Alternatively, for all values of negative
detuning (Δ < ), at the threshold parametric pumping κ ′ =  two saddle-node bifurca-
tions produce both the stable and unstable fixed point pairs (the solid green/striped blue
boundary in Figure ). The origin remains stable, and the two newly created pairs of fixed
points then exist for parametric pumping above threshold (κ ′ > ) until pumping reaches
the even higher value κ ′ =

√
 +Δ′. Between these two values (the striped blue region in

Figure ) with increasing parametric pumping, the stable pair increases in separation and
the unstable pairmoves to the origin. At the higher parametric pumping κ ′ =

√
 +Δ′ (the

striped blue/checkered red boundary in Figure ) the unstable pair annihilates in a sub-
critical pitchfork bifurcation at the origin, and the origin becomes unstable for all higher
parametric pumping κ ′ >

√
 +Δ′. The stable pair of fixed points continues to grow in

separation with further increased parametric pumping (the checkered red region in the
lower half-plane in Figure ).
We now illustrate the steady state behaviour of the semi-classical microwave system in

different ‘phases’. We choose a point in parameter space from each region of the semi-
classical ‘phase diagram’ of Figure . These choices are marked with the black circles in
that figure. These steady states are shown in Figure . Some other near identical steady
states, corresponding to the black crosses in Figure  are depicted in Figure . These are
plotted for comparison with the quantum version of the system in Section .
As well as the bifurcation structure, an important observation to make at this point is

that the existence and bifurcations of the fixed points depend upon only three parame-
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Figure 5 Semi-classical steady states of the microwave system for different regions of the phase
diagram. Semi-classical steady states of the microwave system for different regions of the ‘phase diagram’ in
Figure 3. These eight plots show the semi-classical fixed points that correspond to the parameters of the eight
black crosses in Figure 3. Specifically these parameter values, fro left to right, are:
(κ ′ ,Δ′) = (3, –10), (3.25, –10), (3.5, –10), and (3.75, –10). The colours indicate stability; the green circle markers
are stable fixed points, and the red cross markers are unstable fixed points. All fixed points in the same regions
of parameter space are very similar qualitatively. These semi-classical fixed points can be compared with the
quantum steady state Wigner functions for the same set of parameters in Figure 7.

ters: the magnitude of the parametric pumping rate κ ; the detuning Δ; and the dissipation
rate γ . And specifically, only the two non-dimensional ratios of them, here we chose κ ′ = κ

γ

and Δ′ = Δ
γ
. Thus, the below threshold to above threshold transition of the parametric

oscillator is independent of the size of the induced Kerr nonlinearity χ . However, the sep-
aration of the semi-classical fixed points

√
n̄ =

√
χ

γ
n, and thus the degree and visibility

of the above-threshold oscillations, depends on the scaling parameter χ

γ
. Thus, to see the

semi-classical fixed points move significantly away from the origin, and thus to observe
significant above-threshold behaviour we require a significantly large nonlinearity χ as
well as parametric pumping κ .
It will also prove useful to consider the non-dissipative limit (γ → ) of the semi-

classical equations on resonance (Δ → ). The fixed points are no longer stable zero di-
mensional attractors but rather elliptical fixed points corresponding to stable small os-
cillations in the corresponding Hamiltonian model. One easily sees that the fixed points
occur at

α
 = –

κ

χ
. ()

3.2 Including coherent driving, ε �= 0
Similar to our definitions α =

√
n̄eiθ and n̄, we introduce the scaled Cartesian coordi-

nates x̄ and ȳ such that α = x + iy and

x̄ =
√

χ

γ
x,

ȳ =
√

χ

γ
y.

()

We also define the scaled linear driving

ε̄′ =
√

χ

γ

ε

γ
. ()
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In terms of these, the fixed points of the semi-classical equation of motion () satisfy the
quintic equation

 = κ ′ȳ – 	{
ε̄′}κ ′ȳ +

[

(
κ ′ +Δ′κ ′ – κ ′) + ∣∣ε̄′∣∣]ȳ

+ 
[
{

ε̄′}(Δ′ – κ ′) + 	{
ε̄′}( + κ ′(Δ′ – κ ′))]ȳ

+
[
 +Δ′ – κ ′ – 
{

ε̄′}	{
ε̄′} + 	{

ε̄′}(Δ′ – κ ′)]ȳ
+

[
{
ε̄′} + 	{

ε̄′}(Δ′ + κ ′) + 	{
ε̄′}]. ()

We notice that were there to be only a small input signal and not a large linear drive with
a small input signal on top (ε = ε̄′ = ), then the quintic factorises into the quadratic

 = ȳ
(
κ ′(ȳ) + 

(
κ ′ +Δ′κ ′ – κ ′)ȳ +  +Δ′ – κ ′). ()

This of course defines the tractable analytic fixed points given in Section ..
Unfortunately, solving a quintic equation analytically in terms of radicals can lead to un-

helpful expressions, and is not even always possible. We can of course numerically solve
for the fixed points for certain parameter values, but we leave non-perturbative explo-
ration of the steady states of the ε �=  system for a later study. Instead, we will ultimately
expand the Positive P function as a power series in ε in Section .

4 Quantum steady state
In the previous section we described the fixed point bifurcations of the semi-classical sys-
tem. Here, we investigate whether there is a signature of those semi-classical bifurcations
present in the full quantum system. This can be done exactly using the positive P func-
tion, or numerically by computing the quantum steady state density operator in a trun-
cated number basis and then constructing a phase space quasi probability density (e.g. a Q
function) in different regions of the semi-classical ‘phase diagram’ of Figure . As we will
show, by changing the coupling parameters so as to be on different sides of a semi-classical
bifurcation, there is a corresponding qualitative change in the quantum steady state. This
kind of correspondence principle has proven to be the case for other dissipative nonlinear
quantum systems [–].

4.1 Steady state via the positive P function
The steady state solution of () can be found as the potential conditions are satisfied [].
The steady state solution can be written as

Ps(α,β) =N e–V (α,β), ()

where the potential function is given by

V (α,β) = –αβ – λ ln
(
χα + κ

)
– λ∗ ln

(
χβ + κ

)
–

ε√
χκ

arctan
α

A
–

ε∗
√

χκ
arctan

β

A∗

, ()

http://www.epjquantumtechnology.com/content/1/1/7
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where

λ = – +
Δ

χ
– i

γ

χ
, ()

and A =
√
–α

 =
√

κ
χ
determines the semi-classical fixed points of the corresponding

Hamiltonian (non-dissipative) model, see (). This may be written in an alternate form
by noting that arctanx = i  ln

–ix
+ix ,

Ps(α,β) =N
(

α – α

α + α

)μ(
α∗
 – β

α∗
 + β

)μ∗(
χα + κ

)λ(
χβ + κ

)λ∗
eαβ , ()

where μ = i ε√
χκ

.
Before we can compare this distribution to the phase space structure of the semi-

classical fixed points we must face the unusual feature that the Positive P function has
support on a phase space with twice as many dimensions as the corresponding classical
problem. The semi-classical subspace corresponds to β = α∗. If it were not for the noise
terms in the stochastic differential equations, (), we could start on this subspace andnever
leave it. The noise however will drive the dynamics off the semi-classical subspace. Despite
this we can find a very close correspondence between the semi-classical fixed points and
the form of the steady state Positive P function.
We first discuss the correspondence for the case of no coherent driving, ε = . The peaks

of the steady state positive P function will be located at theminimumof the corresponding
potential function, that is to say, the solutions of, ∂αV = ∂βV = . This gives

β = –
λα

α – α

,

α = –
λ∗β

β – α∗

,

()

where we have used (). A little algebra shows that these are equivalent to

(
β – α∗


)(

α – α

)
= |λ|, ()

 – ( α
α
)

 – ( α∗

β
)

=
λ

λ∗ . ()

There are two classes of solutions: β = α∗ and β = –α∗. We will refer to the first of these
as the semi-classical subspace and the second as the nonclassical.
We first consider the semi-classical subspace. With β = α∗, the first equation in ()

should be compared with the semi-classical steady state from (), which may be written
as

α∗ = –
(Δ

χ
– i γ

χ
)α

α + κ
χ

. ()

In the limit of small quantum noise, χ → , κ → , such that κ
χ
= constant we find that

λ ≈ Δ

χ
– i

γ

χ
, ()
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and, in the semi-classical subspace, the P-function is peaked on the semi-classical steady
states.
In the model ofWolinsky and Carmichael [] the nonlinear detuning χ becomes com-

plex, thus describing nonlinear damping, and the dynamics of the positive P-function
takes a very similar form to that considered here. In particular the additional fixed points
of the non classical dimension are also present. As they describe, the non classical sub-
space allows the noise to drive a stochastic process that corresponds to the nonclassical
features of the steady state solution. In the case of strong nonlinearity they show that the
steady state positive P-function on the non classical subspace is localised on the non clas-
sical fixed points and that these peaks reflect the fact that the steady state is close to a
superposition of two coherent states localised on the classical fixed points.
The explicit solutions to () are not straightforward; they are

(α,β) = (, ), ()(
±


α∗


√
|α| + iλ	{λ} ± λ

√
|α| – 	{λ},

∓ ±

α

√
|α| – iλ∗	{λ} ± λ∗√|α| – 	{λ}

)
.

These are very close, though not exactly coincident, with the semi-classical fixed points
derived in Section .

4.2 Numerical steady state
To perform the numerical computation of the quantum steady state we use the Quantum
Optics MATLAB toolbox []. To do this we approximate the infinite basis of the mi-
crowave cavity oscillator; we choose to do this by truncating in the Fock (number) basis.
This means that we must choose couplings such that the bifurcation takes place suffi-
ciently close to the origin to be accurately approximated by the truncation. This is roughly
because a coherent state of amplitude α has a mean occupation number of |α|. Given
the quantum steady state typically (as we shall see direct evidence of in this section) has
support centred on the semi-classical steady state, fixed points far from the origin (high
|α|) will produce high occupations and thus inaccurate results if we truncate in the Fock
(number) basis.
We choose a point in parameter space from each region of the semi-classical ‘phase

diagram’ of Figure . These choices aremarked with the black circlemarkers in that figure.
Semi-classically, the corresponding steady states were shown in Figure . We now look at
the quantum steady state through the Wigner function of the steady state density matrix.
TheWigner function is defined asW (x, y) = 

π�

∫ ∞
–∞ dz〈x– z|ρ̂ |x+ z〉ei yz� ; for more on the

Wigner function see [, ]. These Wigner functions are shown in Figure . There are
clear signature of the semi-classical bifurcations. The quantum steady state has support
centred on the stable semi-classical fixed points, something which has been previously
observed in [–].
However, in two of theWigner functions of Figure  (those corresponding to the striped

blue region of Figure ) there are three semi-classical stable fixed points, yet only two
main regions of quantum steady state density. To investigate this further, we consider the

http://www.epjquantumtechnology.com/content/1/1/7
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Figure 6 Steady state Wigner functions of the quantummicrowave system. Density plots of steady state
Wigner functions of the quantum microwave system for various parameter regimes. The Wigner function
W(x, y) is plotted where x and y are two quadratures of the microwave field. These nine plots show the
quantum steady states that correspond to the parameters of the nine black circles in Figure 3. Specifically,
from top-left to bottom-right, moving form left to right, then top to bottom, these parameter values are:
(κ ′ ,Δ′) = (0, 10), (5, 10), (0, 0), (5, 0), (0, –10), and (5, –10). The other parameters are set to unity χ = γ = 1 for the
purpose of having a Wigner density well inside the number basis truncation. The quantum steady state shows
clear signs of the semi-classical bifurcations it undergoes. Particular comparison can be made to the
semi-classical steady states of Figure 4. The quantum steady state has support centred on the semi-classical
stable fixed points.

quantum steady states corresponding to small parameter changes in this region. In partic-
ular, we look at the quantum steady states corresponding to the parameter space choices
marked with black crosses in Figure . Semi-classically, the corresponding steady states
were shown in Figure . The corresponding Wigner functions are shown in Figure . In-
terestingly, there is a gradual transition from quantum steady state support centred on
the semi-classical stable fixed point at the origin, to support centred on the separated sta-
ble pair. This transition does not correspond to any semi-classical bifurcation, and at this
stage is a quantum feature we cannot explain or predict semi-classically. We mention it
here to suggest one direction for future investigation of this system.

5 The small signal gain
The positive P-function directly determines the normally ordered steady state moments
of the intracavity field. We now need to chose the contour of integration so that the nor-

http://www.epjquantumtechnology.com/content/1/1/7
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Figure 7 Steady state Wigner functions of the quantummicrowave system. Density plots of steady state
Wigner functions of the quantum microwave system for small parameter changes in the blue parameter
region of Figure 2. The Wigner functionW(x, y) is plotted where x and y are two quadratures of the microwave
field. These eight plots show the quantum steady states that correspond to the parameters of the eight black
crosses in Figure 3. Specifically from left to right these parameter values are:
(κ ′ ,Δ′) = (3, –10), (3.25, –10), (3.5, –10), and (3.75, –10). The other parameters are set to unity χ = γ = 1 for the
purpose of having a Wigner density well inside the number basis truncation. Comparison should be made
with the semi-classical steady states of Figure 5. The quantum steady state shows support that shifts from
being centred on the semi-classical stable fixed point at the origin, to being centred on the separated stable
pair. This transition does not correspond to any semi-classical bifurcation. While the semi-classical steady
states of Figure 5 are quite insensitive to small parameter shifts in regions bounded by semi-classical
bifurcations, the corresponding quantum steady states have a marked qualitative change.

malization constantN is fixed. To this end we define the integrals

Amn =N –
∫

dα dβ αnβmPs(α,β), ()

and express the normally ordered moments as

〈
â†mân〉 = Amn

A
. ()

If we wish to regard this system as an amplifier, we need to calculate the mean cavity
field amplitude 〈â〉 as a function of ε for the case that ε � κ . With this in mind we expand
the solution in a Taylor series in ε

Ps(α,β) = P()
s (α,β) – μ

∞∑
k=


k + 

(
α

α

)k+

P()
s (α,β)

– μ∗
∞∑
k=


k + 

(
β

α∗


)k+

P()
s (α,β), ()

where P()
s (α,β) is the exact steady state solution for ε = . Then

Amn = A()
mn – μ

∞∑
k=


k + 

(
α

α

)k+

A()
m,n+k+

– μ∗
∞∑
k=


k + 

(
β

α∗


)k+

A()
m+k+,n. ()

In this form we can see that the normalisation for Ps(α,β) is the same as that for P()
s (α,β)

as the integrals A()
,k+ vanish.
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If we now substitute () (with ε =  ⇒ μ = ) into (), and use the Beta function
identity

(
 – eiπα

)(
 – eiπβ

)
B(α,β) =

∫
C
tα–( – t)β– dt, ()

then we obtain the moments for zero coherent driving

A()
mn =

κλ+λ∗+( – eiπ (λ+)
)(
 – eiπ (λ∗+))

–χ

(
–

κ

χ

)(n+m)/

×
∞∑
l=

{

l!

(
κ
χ

)l[
 + (–)l+n

][
 + (–)l+m

]
× B

(
λ + ,

l + n + 


)
B
(

λ∗ + ,
l +m + 



)}
. ()

Since we will always be interested in ratios of these, we can omit the leading constant; this
then exactly matches the expression found by Kryuchkyan and Kheruntsyan []

A()
mn =

(
–

κ

χ

)(n+m)/ ∞∑
l=

{

l!

(
κ
χ

)l[
 + (–)l+n

][
 + (–)l+m

]
× B

(
λ + ,

l + n + 


)
B
(

λ∗ + ,
l +m + 



)}
. ()

We first consider the steady state mean intra-cavity photon number with no coherent sig-
nal,

〈
â†â

〉() = A()


A()


. ()

In Figure  we plot this as a function of the parametric driving strength. Note that we
do not see a bistable curve as in Figure . The reason for this is that the quantum steady
state gives a long time average which averages over all possible switching events between
the two semi-classical steady states in the bistable region. The quantum steady state is a
double peaked distribution in the complex P representation with each peak localised near
one or the other semi-classical fixed points in the bistable region.

Figure 8 The steady state mean photon number in
the cavity for no linear driving. The steady state mean
photon number in the cavity for no coherent driving ε

= 0 as a function of the parametric pump magnitude κ

and the detuning Δ. The corresponding semi-classical
fixed points plotted in Figure 2 showed bi-stability for
negative detuning Δ < 0 which does not occur in the
quantum steady state. Time units are chosen so that γ
= 1 and χ = 0.25.
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We can now write the moments of the intra-cavity field as,

〈
â†mân〉 = 〈

â†mân〉() – μ
∞∑
k=


k + 

(

α

)k+〈
â†mân+k+〉()

– μ∗
∞∑
k=


k + 

(

α∗


)k+〈
â†m+k+ân〉(), ()

where 〈· · ·〉 denotes the steady state average for ε = . In particular, the average amplitude
in the cavity at steady state is

〈â〉 = 〈â〉() – μ
∞∑
k=


k + 

(

α

)k+〈
âk+〉()

– μ∗
∞∑
k=


k + 

(

α∗


)k+〈
â†k+â

〉(), ()

where we have used 〈â〉 = . Explicitly, this average amplitude is

〈â〉 = –
α

N

∞∑
k=

∞∑
r=


k + 

r|α|r
(r)!

�

(


+ r

)
�

(


+ r + k

)

×
[

μ

�(  + r + λ∗)�(  + r + k + λ)
+

μ∗|α|
�(  + r + λ)�(  + r + k + λ∗)

]
, ()

where

N =
∞∑
s=

s|α|s
(s)!

|�(  + s)|
|�(  + s + λ)| ()

we recall that α
 = – κ

χ
, λ = –+ Δ

χ
– i γ

χ
, and μ = i ε√

χκ
= i √

κ
χ

ε
|χ | . Writing ε = |ε|eiυ , we can

obtain the magnitude of the cavity field at steady state |〈â〉|,
∣∣〈â〉∣∣ =G

(
κ

χ
,
Δ

χ
,
γ

χ
,υ

)∣∣∣∣ ε

χ

∣∣∣∣, ()

where the gain G =G( κ
χ
, Δ

χ
, γ

χ
,υ) ≥  is

G =

R

∣∣∣∣∣
∞∑
k=

∞∑
r=


k + 

r

(r)!

(
κ

χ

)r

�

(


+ r

)
�

(


+ r + k

)

×
[

S
–
( κ
χ
)e–iυ

S∗

]∣∣∣∣∣, ()

where

R =
∞∑
s=

s

(s)!

(
κ

χ

)s |�(  + s)|
|�(  + s + Δ

χ
– i γ

χ
)| ,

S = �

(


+ r +

Δ

χ
+ i

γ

χ

)
�

(


+ r + k +

Δ

χ
– i

γ

χ

)
.
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Figure 9 Themaximum gain versus the pumpmagnitude and detuning. The maximum gain
Gmax =max{G} at the optimal signal phase υ , versus the parametric pump magnitude κ and detuning Δ,
with time units chosen so that γ = 1 and χ = 0.25. The two plots show different camera perspectives of the
same plotted data. The plot is made from summing 300 terms of the appropriate hypergeometric series. The
summation is not normalised, and thus the gain values are only correct up to a scale; however, the shape of
the plot is indicative.

Figure 10 The superconducting microwave resonator modelled
as a single-sided cavity for use as an input-output formulation.
The superconducting microwave resonator modelled as a single-sided
cavity for use as an input-output formulation. The incoming field
mode operator is âi(t) and the outgoing field mode operator is âo(t).
Loss from the microwave cavity occurs at a rate γ . Note here that γ is
the coefficient of the amplitude decay, the coefficient for the photon
number loss is 2γ . The Hamiltonian dynamics of the cavity mode â are governed by the Interaction picture
HamiltonianH.

In Figure  we plot the maximum gain Gmax = max{G} for a given parametric pump
strength κ and detuning Δ. We have plotted the maximum gain by choosing the optimal
signal phase υ at each set of parameters. Comparing this to Figure  for the casewhen there
is no coherent driving, we see that the gain is a maximum around the critical parametric
driving strength in the bi-stable, negatively detuned region.

6 Linearised quantum system
6.1 Input-output formalism
We consider the microwave cavity with the input-output formulation of quantum optics,
as originally described by Collett and Gardiner in []. To do this, we model the super-
conducting microwave resonator as a single-sided cavity as depicted in Figure .
The input and output fields are treated explicitly with their mode annihilation operators

âi and âo respectively.With this formulation, the quantum stochastic differential equation
we obtain for the microwave resonator field mode operators â and â† are

dâ
dt

= –
i
�
[â,H] – γ â +

√
γ âi(t),

dâ†

dt
= –

i
�

[
â†,H

]
– γ â† +

√
γ âi†(t),

()

where the input field is effectively white noise, uncorrelated in time,

[
âi(t), âi†

(
t′
)]

= δ
(
t – t′

)
Î . ()
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The probability per unit time to detect a photon in the input field is γ 〈âi†(t)âi(t)〉. Finally,
the relationship between the input, output, and cavity fields is given by

âo(t) =
√
γ â(t) + eiξ âi(t), ()

where the phase of the second term, the reflected input, may vary with the system. For an
almost perfectly reflecting mirror of an optical cavity we have ξ = π and eiξ = –, here we
choose this phase as an appropriate approximation.
We also look at the various fields in the frequency domain, by defining the frequency-

domain operators as the time-domain operators’ Fourier transforms,

ˆ̃a(ω) =Ft→ω

{
â(t)

}
,

ˆ̃ai(ω) =Ft→ω

{
âi(t)

}
,

ˆ̃ao(ω) =Ft→ω

{
âo(t)

}
,

()

where we have used the Fourier Transform convention f̃ (ω) = Ft→ω{f (t)} = √
π ×∫ ∞

–∞ dx f (t)e–iωt . In the frequency domain, the input field is also uncorrelated in frequency,

[ ˆ̃ai(ω), ˆ̃a†i (ω′)] = δ
(
ω –ω′)Î , ()

and the relationship between the input, output, and cavity fields is then given by

ˆ̃ao(ω) =
√
γ ˆ̃a(ω) – ˆ̃ai(ω). ()

6.2 Gain spectra
Recall our quantum equations of motion for the microwave cavity field (). We linearise
the system about a semi-classical fixed point α as we did semi-classically in (). This
gives us the linearised equation of motion for the fluctuation⎡⎣ d(δ̂a(t))

dt
d(δ̂a†(t))

dt

⎤⎦ =Mαα∗

[
δ̂a(t)
δ̂a†(t)

]
+

√
γ

[
âi(t)
âi†(t)

]
, ()

where

δ̂a(t) = â(t) – α. ()

In the frequency domain the linearised equation of motion () becomes

iω

[ ̂̃
δa(ω)̂̃

δa
†
(–ω)

]
=Mαα∗

[ ̂̃
δa(ω)̂̃

δa
†
(–ω)

]
+

√
γ

[ ˆ̃ai(ω)
ˆ̃a†i (–ω)

]
. ()

We rewrite this to obtain an expression for the microwave cavity field fluctuation in terms
of the input radiation,[ ̂̃

δa(ω)̂̃
δa

†
(–ω)

]
=

√
γ (iωI –Mαα∗ )–

[ ˆ̃ai(ω)
ˆ̃a†i (–ω)

]
. ()
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Using this expression, together with our input-output expression (), allows us to obtain
an expression for the output fluctuation of the microwave cavity in terms of the input,[ ˆ̆ao(ω)

ˆ̆a†o(–ω)

]
=G(ω)

[ ˆ̃ai(ω)
ˆ̃a†i (–ω)

]
, ()

where the gain matrix G(ω) is

G(ω) =

[
G(ω) G(ω)
G(ω) G(ω)

]
= γ (iωI –Mαα∗ )– – I. ()

Note that ˆ̆ao(ω) is the output fluctuation in the frequency domain. If we re-introduced
the coherent term we would obtain the full output amplitude in the frequency domain,
ˆ̃ao(ω) = ˆ̆ao(ω) +√

πγαδ(ω)Î .
Now, we can rewrite our JacobianMαα∗ from () in terms of the parameters we defined

in () for our semi-classical steady states,

Mαα∗ = γ

[
– – i(Δ′ + n̄) –in̄eiθ – iκ ′

in̄e–iθ + iκ ′ – + i(Δ′ + n̄)

]
. ()

We now introduce two other useful parameters, � ∈R, and ω′ ∈R,

� =
(
κ ′) –Δ′ + n̄

(
–Δ′ + κ ′ cos(θ) – n̄

)
,

ω′ =
ω

γ
.

()

In terms of these parameters, the gain matrix G(ω) is

G(ω) =


� + (ω′ – i)

×
[
– –� –ω′ + i(Δ′ + n̄) in̄eiθ + iκ

–in̄e–iθ – iκ – –� –ω′ – i(Δ′ + n̄)

]
. ()

To calculate the gain measured at an arbitrary phase, we first define the quadrature op-
erator in the frequency domain X̂φ(ω) = ˆ̆ao(ω)eiφ + ˆ̆a†o(–ω)e–iφ , which can be written in
terms of our gain matrix as

X̂φ(ω) =
[
eiφ e–iφ

]
G(ω)

[ ˆ̃ai(ω)
ˆ̃a†i (–ω)

]
. ()

This expression reduces to

X̂φ(ω) = gφ(ω)
( ˆ̃ai(ω)ei(φ+ζ (ω)) + ˆ̃a†i (–ω)e–i(φ+ζ (ω))), ()

where our signal gain gφ(ω) at phase φ is

gφ(ω) =
|– –� –ω′ – ie–iφ(κ ′ + n̄e–iθ ) + i(Δ′ + n̄)|

� + (ω′ – i)
, ()
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Figure 11 Themaximum andminimum gain spectra. (a) The maximum gain spectra |gφmax (ω)|, and
(b) the minimum gain spectra |gφmin (ω)|, for linearisation about the fixed point at the origin for ε = 0. The

gain is dependent upon four variables: the scaled parametric pumping κ ′ = κ
γ ; the scaled detuning Δ′ = Δ

γ ;

and the scaled probed frequency ω′ = ω
γ and phase φ . Here, we plot the spectra against only the parametric

pumping and the probed frequency. The different coloured sheets show different detunings: the red
(innermost) surface shows the gain for no detuning Δ′ = 0; the green (central) surface shows the gain for
|Δ′| = 1; and the blue (outermost) surface shows the gain for |Δ′| = 2. Where the surface is not plotted (other
than where it is truncated around the singularities at (κ ′2) = 1 +Δ′2) it is because the origin does not exist as
a stable semi-classical fixed point to be linearised about for those parameter values. We choose the optimal
phase φ to produce the (a) maximum gain, and (b) minimum gain, at DC for each pumping power and
detuning.

and the frequency-dependent phase shift ζ (ω) is

ζ (ω) = arg
(
– –� –ω′ – ie–iφ

(
κ ′ + n̄e–iθ

)
+ i

(
Δ′ + n̄

))
. ()

Note that while our signal gain gφ(ω) is complex for non-zero frequency, it is real for the
DC frequency in this frame.
If we consider our analytically solved case of no linear driving bias (ε = ε̄′ = ), and

linearise about the ‘below threshold’ stable fixed point at the origin, then� = κ ′ –Δ′ < 
and our gain |gφ(ω)| at a phase φ can be plotted against the scaled parametric pumping
κ ′ and detuning Δ′. We plot the maximum gain |gφmax (ω)| for each value of parametric
pumping and detuning (optimising φ to find the maximum gain at DC for each pair of
these parameters) in Figure .

6.3 Squeezing spectra
Having derived the gain matrix () relating the input to the output, we are now also in
a position to investigate the squeezing spectrum of the microwave system. Recall our
quadrature operator in the frequency domain X̂φ(ω) = ˆ̆ao(ω)eiφ + ˆ̆a†o(–ω)e–iφ written in
terms of our gainmatrix in (). Our squeezing spectrum is the variance of this quadrature
operator. We thus define this squeezing spectrum Sφ(ω), again in the frequency domain,
to be

Sφ(ω) =
∫ ∞

–∞

〈
X̂φ(ω), X̂φ

(
ω′)〉dω′, ()

where the notation for the covariance bracket is 〈Â, B̂〉 = 〈ÂB̂〉 – 〈Â〉〈B̂〉. We then use the
linearity of both arguments of the covariance bracket to express the variance of the quadra-

http://www.epjquantumtechnology.com/content/1/1/7


Meaney et al. EPJ Quantum Technology 2014, 1:7 Page 20 of 23
http://www.epjquantumtechnology.com/content/1/1/7

ture operator as

Sφ(ω) =
∫ ∞

–∞

[
eiφ e–iφ

]
G(ω)

[
〈 ˆ̃ai(ω), ˆ̃ai(ω′)〉 〈 ˆ̃ai(ω), ˆ̃a†i (–ω′)〉

〈 ˆ̃a†i (–ω), ˆ̃ai(ω′)〉 〈 ˆ̃a†i (–ω), ˆ̃a†i (–ω′)〉

]

×G
(
ω′)T [

eiφ

e–iφ

]
dω′. ()

Then, using the commutation relation of () we can rewrite Sφ(ω) in terms of normally-
ordered variances of the input field as

Sφ(ω) =
∫ ∞

–∞

[
eiφ e–iφ

]
G(ω)

⎡⎢⎢⎣ 〈 ˆ̃ai(ω), ˆ̃ai(ω′)〉 〈 ˆ̃a†i (–ω), ˆ̃ai(ω′)〉
+ δ(ω +ω′)

〈 ˆ̃a†i (–ω), ˆ̃ai(ω′)〉 〈 ˆ̃a†i (–ω), ˆ̃a†i (–ω′)〉

⎤⎥⎥⎦
×G

(
ω′)T [

eiφ

e–iφ

]
dω′. ()

To proceed we now use the statistics of the input field. A coherent input field has
zero normally-ordered variances (〈 ˆ̃ai(ω), ˆ̃ai(ω′)〉 = 〈 ˆ̃a†i (–ω′), ˆ̃ai(ω)〉 = 〈 ˆ̃a†i (–ω), ˆ̃a†i (–ω′)〉 =
). Thus, the only non-zero term in central matrix is the delta function term arising from
the commutation relations. Using this, we can compute the integral of the matrix expres-
sion, and our squeezing spectrum reduces to

Sφ(ω) =G(ω)G(–ω)eiφ +G(ω)G(–ω)

+G(ω)G(–ω) +G(ω)G(–ω)e–iφ , ()

or explicitly,

Sφ(ω) =
|– –� –ω′ – ie–iφ(κ ′ + n̄e–iθ ) + i(Δ′ + n̄)|

|� + (ω′ – i)| . ()

If we consider our analytically solved case of no linear driving bias (ε = ε̄′ = ), and
linearise about the ‘below threshold’ stable fixed point at the origin, then� = κ ′ –Δ′ < 
and our squeezing Sφ(ω) at a phaseφ can be plotted against the scaled parametric pumping
κ ′ and detuningΔ′.We plot the squeezing spectrum for each value of parametric pumping
and detuning (setting the phase φ to be thatwhich gives theminimumnoise searching over
all frequencies for each pair of these parameters) in Figure .

6.4 Signal to noise ratio
For operation of themicrowave system as a bifurcation amplifier, the parameters which re-
sult in maximum gain may not result in minimum noise. Instead, rather than optimising
for maximum gain or minimum noise individually, the quantity which we wish to max-
imise is the signal to noise ratio. However, we see from our expressions for the gain ()
and noise (), that Sφ(ω) = |gφ(ω)|, and that our signal to noise ratio is thus unity,

SNRφ(ω) =
|gφ(ω)|√
Sφ(ω)

= . ()
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Figure 12 Theminimum possible noise spectra.
The minimum possible noise spectra Sφmin (ω) for
linearisation about the fixed point at the origin for ε
= 0. The noise spectrum is dependent on four
parameters: the scaled parametric pumping κ ′ = κ

γ ;

the scaled detuning Δ′ = Δ
γ ; and the scaled probed

frequency ω′ = ω
γ and phase φ . Here we plot the

noise spectrum against only the parametric
pumping and the probed frequency. The different
coloured sheets show different detunings: the red
(innermost) surface shows the noise for no detuning
Δ′ = 0; the green (central) surface shows the noise
for |Δ′| = 1; and the blue (outermost) surface shows the noise for |Δ′| = 2. Where the surface is not plotted it
is because the origin does not exist as a stable semi-classical fixed point to be linearised about for those
parameter values. We choose the optimal phase φ to produce the minimum noise Sφ (ω) searching over all
frequencies for each pumping power and detuning.

For the linearised system, this equality holds for all values of all parameters (parametric
pumping, detuning, and cavity dissipation), all probed frequencies and phases, and re-
gardless of which semi-classical fixed point we choose to linearise about.
Physically the means that our system is acting as a parametric amplifier. The quadrature

of maximum gain is the same as the quadrature of maximum noise, and vice-versa for the
minimum gain and noise. We can thus use this microwave system to amplify a signal to a
measurable level without affecting its signal to noise ratio.

7 Conclusion
In this paper we detailed the quantum and semi-classical structure of a superconducting
microwave resonator connected through a SQUID loop to ground. In particular we ob-
served that the semi-classical model contains a bifurcation structure, and that the remains
of this structure are still visible in the full quantummechanical steady state. Furthermore,
we showed it can be used as a bifurcation amplifier. We did this analysis by: linearising
about the semi-classical steady state below the ‘threshold’ of the amplifier; by truncating
the oscillator basis in the Fock basis and numerically computing the quantum phase space
at steady state; and also by computing the exact quantum steady state by using an analytical
phase space technique.
First, we showed that the corresponding semi-classical model has its fixed points deter-

mined by a quintic polynomial. We showed that for the small linear signal regime ε = ,
that this quintic factors and is analytically solvable. This semi-classical system then un-
dergoes a bifurcation of its semi-classical steady state with increased parametric pumping
power. This bifurcation gives a threshold for the amplifier and occurs when the para-
metric pumping power equals the cavity decay, with adjustment for a detuned drive,
|κ| = γ  +Δ. The sign of the detuning specifies the formof the bifurcations. For a positive
detuning Δ ≥ , the origin undergoes a supercritical pitchfork bifurcation at the thresh-
old. For negative detuning Δ < , the origin instead loses its stability at |κ| = γ  + Δ in
a subcritical pitchfork bifurcation with two intermediate pairs of fixed points created in
saddle-node bifurcations when the parametric pumping power reaches |κ| = γ . The nu-
merically calculated quantum steady states were shown to have clear signatures of these
semi-classical steady state bifurcations. Specifically, the Wigner function representation
of the quantum phase space was seen to have support on the semi-classical fixed points.
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In addition to numerically computing the quantum phase space at steady state by trun-
cating the oscillator basis, we also calculated the exact quantum steady state. This was
done following the work of Kryuchkyan and Kheruntsyan [] by using the Positive P
representation. The method took advantage of the fact that the potential conditions were
satisfied. The exact quantum phase space density at steady state was seen to be peaked in
the vicinity of the corresponding semi-classical fixed points.
We showed that the quantum device functioned as a bifurcation amplifier until thresh-

old. We calculated the small signal gain of the amplifier using the exact quantum steady
state. We also approximated this by linearising the steady state about the semi-classical
below-threshold fixed point using the input-output formalism of Collett and Gardiner
[]. With this procedure we also calculated noise spectra, and we showed that the signal
to noise ratio at all frequencies and phases was equal to unity. We thus showed that the
quarter-wave microwave resonator considered can be made to act as a parametric ampli-
fier. This device can take a signal from a nano-electromechanical system and amplify it to
a measurable level without affecting its signal to noise ratio.
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