Bacsardi L. On the way to quantum-based satellite communication. IEEE Commun Mag. 2013;51(8):50-5.
Article
Google Scholar
Ursin R, Tiefenbacher F, Schmitt-Manderbach T, Weier H, Scheidl T, Lindenthal M, Blauensteiner B, Jennewein T, Perdigues J, Trojek P, Ömer B, Fürst M, Meyenburg M, Rarity J, Sodnik Z, Barbieri C, Weinfurter H, Zeilinger A. Entanglement-based quantum communication over 144 km. Nat Phys. 2007;3(7):481-6.
Article
Google Scholar
Nauerth S, Moll F, Rau M, Fuchs C, Horwath J, Frick S, Weinfurter H. Air-to-ground quantum communication. Nat Photonics. 2013;7(5):382-6.
Article
ADS
Google Scholar
Pugh CJ, Kaiser S, Bourgoin J-P, Jin J, Sultana N, Agne S, Anisimova E, Makarov V, Choi E, Higgins BL, Jennewein T. Airborne demonstration of a quantum key distribution receiver payload. arXiv preprint. arXiv:1612.06396 (2016).
Villoresi P, Jennewein T, Tamburini F, Aspelmeyer M, Bonato C, Ursin R, Pernechele C, Luceri V, Bianco G, Zeilinger A, Barbieri C. Experimental verification of the feasibility of a quantum channel between space and Earth. New J Phys. 2008;10(3):033038.
Article
Google Scholar
Yin J, Cao Y, Liu S-B, Pan G-S, Wang J-H, Yang T, Zhang Z-P, Yang F-M, Chen Y-A, Peng C-Z, Pan J-W. Experimental quasi-single-photon transmission from satellite to Earth. Opt Express. 2013;21(17):20032-40.
Article
ADS
Google Scholar
Vallone G, Bacco D, Dequal D, Gaiarin S, Luceri V, Bianco G, Villoresi P. Experimental satellite quantum communications. Phys Rev Lett. 2015;115(4):040502.
Article
ADS
Google Scholar
Wang J-Y, Yang B, Liao S-K, Zhang L, Shen Q, Hu X-F, Wu J-C, Yang S-J, Jiang H, Tang Y-L, Zhong B, Liang H, Liu W-Y, Hu Y-H, Huang Y-M, Qi B, Ren J-G, Pan G-S, Yin J, Jia J-J, Chen Y-A, Chen K, Peng C-Z, Pan J-W. Direct and full-scale experimental verifications towards ground-satellite quantum key distribution. Nat Photonics. 2013;7(5):387-93.
Article
ADS
Google Scholar
Bourgoin J-P, Higgins BL, Gigov N, Holloway C, Pugh CJ, Kaiser S, Cranmer M, Jennewein T. Free-space quantum key distribution to a moving receiver. Opt Express. 2015;23(26):33437-47.
Article
ADS
Google Scholar
Morong W, Ling A, Oi DKL. Quantum optics for space platforms. Opt Photonics News. 2012;23:42-9.
Article
Google Scholar
Jennewein T, Grant C, Choi E, Pugh C, Holloway C, Bourgoin J, Hakima H, Higgins B, Zee R. The NanoQEY mission: ground to space quantum key and entanglement distribution using a nanosatellite. In: SPIE security + defence. 2014. 925402. International Society for Optics and Photonics.
Google Scholar
Scheidl T, Wille E, Ursin R. Quantum optics experiments using the International Space Station: a proposal. New J Phys. 2013;15(4):043008.
Article
Google Scholar
Scheidl T, Ursin R. Space-QUEST. Quantum communication using satellites. In: Proceedings of the international conference on space optical systems and applications (ICSOS). 2012.
Google Scholar
Elser D, Gunthner K, Khan I, Stiller B, Marquardt C, Leuchs G, Saucke K, Trondle D, Heine F, Seel S, Greulich P, Zech H, Gutlich B, Richter I, Meyer R. Satellite quantum communication via the Alphasat laser communication terminal-quantum signals from 36 thousand kilometers above Earth. In: 2015 IEEE international conference on space optical systems and applications (ICSOS). IEEE; 2015. p. 1-4.
Google Scholar
Wu J, Sun L. Strategic priority program on space science. Space Sci Activities China. 2014;5:001.
Google Scholar
China launches first-ever quantum communication satellite. http://news.xinhuanet.com/english/2016-08/16/c_135601026.htm (2016).
Heidt H, Puig-Suari J, Moore A, Nakasuka S, Twiggs R. CubeSat: A new generation of picosatellite for education and industry low-cost space experimentation. In: 14th annual/USU conference on small satellites (SSC00-V-5). 2000.
Google Scholar
Shao A, Koltz EA, Wertz JR. Performance based cost modeling: quantifying the cost reduction potential of small observation satellties. In: AIAA reinventing space conference, AIAA-RS-2013-1003. Los Angeles, CA. 2013. p. 14-7.
Google Scholar
Wuerl A, Wuerl M. Lessons learned for deploying a microsatellite from the International Space Station. In: Aerospace conference, 2015 IEEE. IEEE; 2015. p. 1-12.
Chapter
Google Scholar
Lätt S, Slavinskis A, Ilbis E, Kvell U, Voormansik K, Kulu E, Pajusalu M, Kuuste H, Sünter I, Eenmäe T, et al. ESTCube-1 nanosatellite for electric solar wind sail in-orbit technology demonstration. Proc Est Acad Sci. 2014;63(2):200.
Google Scholar
Muylaert J, Reinhard R, Asma C, Buchlin J, Rambaud P, Vetrano M. QB50: an international network of 50 CubeSats for multi-point, in-situ measurements in the lower thermosphere and for re-entry research. In: ESA atmospheric science conference. Barcelona, Spain. 2009. p. 7-11.
Google Scholar
Foster C, Hallam H, Mason J. Orbit determination and differential-drag control of Planet Labs CubeSat constellations. arXiv preprint. arXiv:1509.03270 (2015).
Sarda K, Grant C, Eagleson S, Kekez DD, Zee RE. Canadian Advanced Nanospace Experiment 2 orbit operations: two years of pushing the nanosatellite performance envelope. In: ESA small satellites, services and systems symposium. 2010.
Google Scholar
Swartout M. CubeSat database. https://sites.google.com/a/slu.edu/swartwout/home/cubesat-database (2015).
Oi DKL, Ling A, Grieve JA, Jennewein T, Dinkelaker AN, Krutzik M. Nanosatellites for quantum science and technology. Contemp Phys. 2017;58(1):25-52.
Article
ADS
Google Scholar
Swartwout M. The first one hundred CubeSats: a statistical look. J Small Satell. 2014;2(2):213-33.
Google Scholar
Spaceflight Industries. http://www.spaceflight.com/.
Tsitas SR, Kingston J. 6U CubeSat commercial applications. Aeronaut J. 2012;116(1176):189-98.
Article
Google Scholar
Turner CG. NPS TINYSCOPE program management. Technical report, DTIC document. 2010.
Agasid E, Rademacher A, McCullar M, Gilstrap R. Study to determine the feasibility of a Earth observing telescope payload for a 6U nano satellite. http://www.nsbe-hsc.org/cdst_feasability_report.pdf (2010).
Straub J, Fevig R, Borzych T, Church C, Holmer C, Hynes M, Komus A. From smallsat to 6U CubeSat: a case study in size and mass reduction. In: ACSER 6U CubeSat low cost space missions workshop. 2012.
Google Scholar
Skrobot G. CubeSat missions to LEO and beyond. InSight (AV) 2, 2. 2016.
Mero B, Quillien KA, McRobb M, Chesi S, Marshall R, Gow A, Clark C, Anciaux M, Cardoen P, De Keyser J, Demoulin Ph, Fussen D, Pieroux D, Ranvier S. PICASSO: a state of the art CubeSat. In: 29th annual AIAA/US conference on small satellites (SSC15-III-2). 2015.
Google Scholar
Hevner R, Holemans W, Puig-Suari J, Twiggs R. An advanced standard for CubeSats. 2011. DigitalCommons@USU.
ISIS: 6U structure. http://www.isispace.nl/cms/index.php/news/latest-news/120-introducing-the-isis-6u-structure (2010).
Pumpkin. Supernova 6U structure. http://space.skyrocket.de/doc_sdat/supernova-beta.htm (2015).
Syrlinks. Very high data rate transmitter in X-band for CubeSat and NanoSatellites. http://www.syrlinks.com/en/products/cubesats/hdr-x-band-transmitter.html (2015).
Kahr E, Montenbruck O, O’Keefe K, Skone S, Urbanek J, Bradbury L, Fenton P. GPS tracking on a nanosatellite the CanX-2 flight experience. In: 8th international ESA conference on guidance, navigation & control systems. Karlovy Vary, Czech Republic. 2011. p. 5-10.
Google Scholar
Mason J, Baumgart M, Woods T, Hegel D, Rogler B, Stafford G, Solomon S, Chamberlin P. MinXSS CubeSat on-orbit performance and the first flight of the Blue Canyon Technologies XACT 3-axis ADCS. In: 30th annual AAIA/USU conference on small satellites. 2016.
Google Scholar
Maryland Aerospace Industries. http://maiaero.com/.
Berlin Space Technologies. http://www.berlin-space-tech.com/.
Nauerth S. Air to ground quantum key distribution [dissertation]. LMU; 2013.
Mélen G. Integrated quantum key distribution sender unit for hand-held platforms [dissertation]. LMU; 2016.
Bourgoin J-P, Gigov N, Higgins BL, Yan Z, Meyer-Scott E, Khandani AK, Lütkenhaus N, Jennewein T. Experimental quantum key distribution with simulated ground-to-satellite photon losses and processing limitations. Phys Rev A. 2015;92(5):052339.
Article
ADS
Google Scholar
Ho C, Lamas-Linares A, Kurtsiefer C. Clock synchronization by remote detection of correlated photon pairs. New J Phys. 2009;11(4):045011.
Article
Google Scholar
Cheng C, Chandrasekara R, Tan YC, Ling A. Space qualified nanosatellite electronics platform for photon pair experiments. J Lightwave Technol. 2015.
Tang Z, Chandrasekara R, Tan YC, Cheng C, Durak K, Ling A. The photon pair source that survived a rocket explosion. Sci Rep. 2016;6.
Tang Z, Chandrasekara R, Sean YY, Cheng C, Wildfeuer C, Ling A. Near-space flight of a correlated photon system. Sci Rep. 2014;4:6366.
Article
ADS
Google Scholar
Tang Z, Chandrasekara R, Tan YC, Cheng C, Sha L, Hiang GC, Oi DK, Ling A. Generation and analysis of correlated pairs of photons aboard a nanosatellite. Phys Rev Appl. 2016;5(5):054022.
Article
ADS
Google Scholar
Chandrasekara R, Tang Z, Tan Y, Cheng C, Sha L, Hiang G, Oi D, Ling A. Correlated photon pairs in low Earth orbit. In: SPIE security + defence. 2016. 99960. International Society for Optics and Photonics.
Google Scholar
Septriani B, Grieve JA, Durak K, Ling A. Thick-crystal regime in photon pair sources. Optica. 2016;3(3):347-50.
Article
Google Scholar
Chandrasekara R, Zhongkan T, Chuan TY, Cheng C, Septriani B, Durak K, Grieve JA, Ling A. Deploying quantum light sources on nanosatellites I: lessons and perspectives on the optical system. In: Proc. SPIE 9615, quantum communications and quantum imaging XIII. 2015. 96150S.
Google Scholar
Bedington R, Bai X, Truong-Cao E, Tan YC, Durak K, Zafra AV, Grieve JA, Oi DK, Ling A. Nanosatellite experiments to enable future space-based QKD missions. EPJ Quantum Technol. 2016;3(1):12.
Article
Google Scholar
Veerappan C, Charbon E. A low dark count pin diode based SPAD in CMOS technology. IEEE Trans Electron Devices. 2016;63(1):65-71.
Article
ADS
Google Scholar
Pavia JM, Scandini M, Lindner S, Wolf M, Charbon E. A \(1\times 400\) backside-illuminated SPAD sensor with 49.7 ps resolution, 30 pJ/sample TDCs fabricated in 3D CMOS technology for near-infrared optical tomography. IEEE J Solid-State Circuits. 2015;50(10):2406-18.
Article
Google Scholar
Charbon E. Single-photon imaging in complementary metal oxide semiconductor processes. Philos Trans R Soc, Math Phys Eng Sci. 2014;372(2012):20130100.
Article
ADS
Google Scholar
Maruyama Y, Blacksberg J, Charbon E. A \(1024\times8\) 700-ps time-gated SPAD line sensor for planetary surface exploration with laser Raman spectroscopy and LIBS. IEEE J Solid-State Circuits. 2014;49(1):179-89.
Article
Google Scholar
Charbon E, Carrara L, Niclass C, Scheidegger N, Shea H. Radiation-tolerant CMOS single-photon imagers for multiradiation detection. Technical report, CRC Press. 2010.
Burri S, Homulle H, Bruschini C, Charbon E. LinoSPAD: a time-resolved \(256\times1\) CMOS SPAD line sensor system featuring 64 FPGA-based TDC channels running at up to 8.5 giga-events per second. In: SPIE photonics Europe. 2016. 98990. International Society for Optics and Photonics.
Google Scholar
Vallone G, Dequal D, Tomasin M, Vedovato F, Schiavon M, Luceri V, Bianco G, Villoresi P. Interference at the single photon level along satellite-ground channels. Phys Rev Lett. 2016;116:253601.
Article
ADS
Google Scholar
Bourgoin J, Meyer-Scott E, Higgins BL, Helou B, Erven C, Huebel H, Kumar B, Hudson D, D’Souza I, Girard R, Laflamme R, Jennewein T. A comprehensive design and performance analysis of low Earth orbit satellite quantum communication. New J Phys. 2013;15(2):023006.
Article
Google Scholar
Schwartz N, Pearson D, Todd S, Vick A, Lunney D, MacLeod D. A segmented deployable primary mirror for Earth observation from a CubeSat platform. In: 30th annual AAIA/USU conference on small satellites (SSC16-WK-3). 2016.
Google Scholar
Andersen G, Asmolova O, McHarg MG, Quiller T, Maldonado C. FalconSat-7: a membrane space solar telescope. In: SPIE astronomical telescopes + instrumentation. 2016. 99041. International Society for Optics and Photonics.
Google Scholar
Champagne J, Hansen S, Newswander T, Crowther B. CubeSat image resolution capabilities with deployable optics and current imaging technology. In: 28th annual AAIA/USU conference on small satellites (SSC14-VII-2). 2014.
Google Scholar
Agasid E, Ennico-Smith K, Rademacher A. Collapsible space telescope (CST) for nanosatellite imaging and observation. In: 27th annual AAIA/USU conference on small satellites (SSC13-III-4). 2013.
Google Scholar
Dolkens D. A deployable telescope for sub-meter resolutions from microsatellite platforms [dissertation]. TU Delft, Delft University of Technology; 2015.
Colton K, Klofas B. Supporting the flock: building a ground station network for autonomy and reliability. In: 30th annual AAIA/USU conference on small satellites (SSC16-IX-05). 2016.
Google Scholar
Delabie T, Vandenbussche B, Schutter J. An accurate and efficient Gaussian fit centroiding algorithm for star trackers. In: AAS/AIAA space flight mechanics meeting. vol. 475. 2013.
Google Scholar
Ortiz GG, Lee S, Alexander JW. Sub-microradian pointing for deep space optical telecommunications network. In: 19th AIAA int. comms satellite systems conf. Toulouse, France. 2001. p. 1-16.
Google Scholar
Gutierrez HL, Gaines JD, Newman MR. Line-of-sight stabilization and back scanning using a fast steering mirror and blended rate sensors. In: Infotech@ aerospace 2011. 2011. 1659.
Google Scholar
Udrea B, Nayak M, Ankersen F. Analysis of the pointing accuracy of a 6U CubeSat for proximity operations and RSO imaging. In: 5th international conference on spacecraft formation flying missions and technologies. Munich, Germany. 2013.
Google Scholar
Lyle R, Stabekis P. Spacecraft aerodynamic torques. 1971. NASA SP-8058.
Garcia RF, Doornbos E, Bruinsma S, Hebert H. Atmospheric gravity waves due to the Tohoku-Oki tsunami observed in the thermosphere by GOCE. J Geophys Res, Atmos. 2014;119(8):4498-506.
Article
ADS
Google Scholar
Hegel D. Flexcore: Low-cost attitude determination and control enabling high-performance small spacecraft. In: 30th annual AAIA/USU conference on small satellites (SSC16-X-7). 2016.
Google Scholar
Sanders DS, Heater DL, Peeples SR, Sykes JK. Pushing the limits of CubeSat attitude control: a ground demonstration. In: 27th annual AIAA/US conference on small satellites (SSC13-III-10). 2013.
Google Scholar
Weiss W, Rucinski S, Moffat A, Schwarzenberg-Czerny A, Koudelka O, Grant C, Zee R, Kuschnig R, Matthews J, Orleanski P, Pamyatnykh A, Pigulski A, Alves J, Guedel M, Handler G, Wade GA, Zwintz K. BRITE-constellation: nanosatellites for precision photometry of bright stars. Publ Astron Soc Pac. 2014;126(940):573-85.
Article
ADS
Google Scholar
Sarda K, Grant CC, Zee RE. Three stellar years (and counting) of precision photometry by the BRITE astronomy constellation. In: 30th annual AAIA/USU conference on small satellites (SSC16-III-07). 2016.
Google Scholar
Steyn W, Hashida Y. An attitude control system for a low-cost Earth observation satellite with orbit maintenance capability. In: 13th annual AAIA/USU conference on small satellites (SSC99-XI-04). 1999.
Google Scholar
Yura H. Signal-to-noise ratio of heterodyne LiDAR systems in the presence of atmospheric turbulence. J Mod Opt. 1979;26(5):627-44.
Google Scholar
Dror I, Sandrov A, Kopeika NS. Experimental investigation of the influence of the relative position of the scattering layer on image quality: the shower curtain effect. Appl Opt. 1998;37(27):6495-9.
Article
ADS
Google Scholar
Aoki W, Hełminiak K, Tajitsu A. Subaru telescope high dispersion spectrograph user manual v.2.0.0. 2014.
Nanoracks. http://nanoracks.com/.
Klofas B. Planet Labs ground station network. In: 13th annual CubeSat developers workshop. 2016. Cal Poly SLO. http://mstl.atl.calpoly.edu/~bklofas/Presentations/DevelopersWorkshop2016/.
Google Scholar
Inter-agency space debris coordination committee. http://www.iadc-online.org/ (2015).
Kerr E, Macdonald M. A general perturbations method for spacecraft lifetime analysis. In: 25th AAS/AIAA space flight mechanics meeting. 2015.
Google Scholar
Boone K, Bourgoin J-P, Meyer-Scott E, Heshami K, Jennewein T, Simon C. Entanglement over global distances via quantum repeaters with satellite links. Phys Rev A. 2015;91(5):052325.
Article
ADS
Google Scholar
Reich ES. Troubled probe upholds Einstein. J Mod Phys. 2011;2(4):210-8.
Article
Google Scholar
NASA: James Webb space telescope independent comprehensive review panel final report. NASA. 2010.
Shi Y, Chng B, Kurtsiefer C. Random numbers from vacuum fluctuations. Appl Phys Lett. 2016;109(4):041101.
Article
ADS
Google Scholar
Abellan C, Amaya W, Domenech D, Muñoz P, Capmany J, Longhi S, Mitchell MW, Pruneri V. Quantum entropy source on an InP photonic integrated circuit for random number generation. Optica. 2016;3(9):989-94.
Article
Google Scholar
Planet spacecraft operations and ground control ver.1.2, September 2015. https://www.planet.com/docs/spec-sheets/spacecraft-ops/.
Clark RN. Spectroscopy of rocks and minerals, and principles of spectroscopy. In: Rencz AN, editor. Manual of remote sensing, volume 3, remote sensing for the Earth sciences. New York: Wiley; 1999, p. 3-58.
Google Scholar
MODTRAN. http://modtran.spectral.com/.