Bennett CH, Brassard G. Quantum cryptography: public key distribution and coin tossing. In: Proceedings of international conference on computers, systems, and signal processing. New York: IEEE Press; 1984. p. 175–9.
Google Scholar
Ekert AK. Quantum cryptography based on Bell’s theorem. Phys Rev Lett. 1991;67:661–3.
Article
ADS
MathSciNet
MATH
Google Scholar
Gilbert G, Hamrick M. Practical Quantum Cryptography: A Comprehensive Analysis (Part One). Tech. Rep. MTR00W0000052. The MITRE Corporation; 2000. quant-ph/0009027.
Buttler WT, Hughes RJ, Lamoreaux SK, Morgan GL, Nordholt JE, Peterson CG. Daylight quantum key distribution over 1.6 km. Phys Rev Lett. 2000;84:5652–5.
Article
ADS
Google Scholar
Rarity JG, Tapster PR, Gorman PM, Knight P. Ground to satellite secure key exchange using quantum cryptography. New J Phys. 2002;4:82.
Article
Google Scholar
Nordholt JE, Hughes RJ, Morgan GL, Peterson CG, Wipf CC. Present and future free-space quantum key distribution. In: Proc. of SPIE on free-space laser communication technologies. vol. 4635. 2002. p. 116–26.
Chapter
Google Scholar
Ursin R, Jennewein T, Kofler J, Perdigues JM, Cacciapuoti L, de Matos CJ, Aspelmeyer M, Valencia A, Scheidl T, Acin A, Barbieri C, Bianco G, Brukner C, Capmany J, Cova S, Giggenbach D, Leeb W, Hadfield RH, Laflamme R, Lütkenhaus N, Milburn G, Peev M, Ralph T, Rarity J, Renner R, Samain E, Solomos N, Tittel W, Torres JP, Toyoshima M, Ortigosa-Blanch A, Pruneri V, Villoresi P, Walmsley I, Weihs G, Weinfurter H, Zukowski M, Zeilinger A. Space-QUEST, experiments with quantum entanglement in space. Europhys News. 2009;40:26–9.
Article
Google Scholar
Bonato C, Tomaello A, Da Deppo V, Naletto G, Villoresi P. Feasibility of satellite quantum key distribution. New J Phys. 2009;11:045017.
Article
Google Scholar
Bourgoin J-P, Meyer-Scott E, Higgins BL, Helou B, Erven C, Hübel H, Kumar B, Hudson D, D’Souza I, Girard R, Laflamme R, Jennewein T. A comprehensive design and performance analysis of low Earth orbit satellite quantum communication. New J Phys. 2013;15:023006.
Article
MATH
Google Scholar
Meyer-Scott E, Yan Z, MacDonald A, Bourgoin J-P, Hübel H, Jennewein T. How to implement decoy-state quantum key distribution for a satellite uplink with 50-dB channel loss. Phys Rev A. 2011;84:062326.
Article
ADS
Google Scholar
Higgins BL, Bourgoin J-P, Gigov N, Meyer-Scott E, Yan Z, Jennewein T. Detailed performance analysis of the proposed QEYSSat quantum receiver satellite. In: Conf. on lasers and electro-optics JW4A.118. 2012.
Google Scholar
Gibney E. Chinese satellite is one giant step for the quantum Internet. Nature. 2016;535:478–9.
Article
ADS
Google Scholar
Wang B-X, Mao Y, Shen L, Zhang L, Lan X-B, Ge D, Gao Y, Li J, Tang Y-L, Tang S-B, Zhang J, Chen T-Y, Pan J-W. Long-distance transmission of quantum key distribution coexisting with classical optical communication over weakly-coupled few-mode fiber. Opt Express. 2020;28:12558.
Article
ADS
Google Scholar
Wei K, Li W, Tan H, Li Y, Min H, Zhang W-J, Li H, You L, Wang Z, Jiang X, Chen T-Y, Liao S-K, Peng C-Z, Xu F, Pan J-W. High-speed measurement-device-independent quantum key distribution with integrated silicon photonics. Phys Rev X. 2020;10:031030.
Google Scholar
Chen J-P, Zhang C, Liu Y, Jiang C, Zhang W, Hu X-L, Guan J-Y, Yu Z-W, Xu H, Lin J, Li M-J, Chen H, Li H, You L, Wang Z, Wang X-B, Zhang Q, Pan J-W. Sending-or-not-sending with independent lasers: secure twin-field quantum key distribution over 509 km. Phys Rev Lett. 2020;124:070501.
Article
ADS
Google Scholar
Li Z-D, Zhang R, Yin X-F, Liu L-Z, Hu Y, Fang Y-Q, Fei Y-Y, Jiang X, Zhang J, Li L, Liu N-L, Xu F, Chen Y-A, Pan J-W. Experimental quantum repeater without quantum memory. Nat Photonics. 2019;13:644.
Article
ADS
Google Scholar
Buttler WT, Hughes RJ, Kwiat PG, Lamoreaux SK, Luther GG, Morgan GL, Nordholt JE, Peterson CG, Simmons CM. Practical free-space quantum key distribution over 1 km. Phys Rev Lett. 1998;81:3283.
Article
ADS
MATH
Google Scholar
Hughes RJ, Nordholt JE, Derkacs D, Peterson CG. Practical free-space quantum key distribution over 10 km in daylight and at night. New J Phys. 2002;4:43.
Article
Google Scholar
Ursin R, Tiefenbacher F, Schmitt-Manderbach T, Weier H, Scheidl T, Lindenthal M, Blauensteiner B, Jennewein T, Perdigues J, Trojek P, Ömer B, Fürst M, Meyenburg M, Rarity J, Sodnik Z, Barbieri C, Weinfurter H, Zeilinger A. Entanglement-based quantum communication over 144 km. Nat Phys. 2007;3:481–6.
Article
Google Scholar
Ma X-S, Herbst T, Scheidl T, Wang D, Kropatschek S, Naylor W, Wittmann B, Mech A, Kofler J, Anisimova E, Makarov V, Jennewein T, Ursin R, Zeilinger A. Quantum teleportation over 143 kilometres using active feed-forward. Nature. 2012;489:269.
Article
ADS
Google Scholar
Joshi SK, Pienaar J, Ralph TC, Cacciapuoti L, McCutcheon W, Rarity J, Giggenbach D, Lim JG, Makarov V, Fuentes I, Scheidl T, Beckert E, Bourennane M, Bruschi DE, Cabello A, Capmany J, Carrasco-Casado A, Diamanti E, Dušek M, Elser D, Gulinatti A, Hadfield RH, Jennewein T, Kaltenbaek R, Krainak MA, Lo H-K, Marquardt C, Milburn G, Peev M, Poppe A, Pruneri V, Renner R, Salomon C, Skaar J, Solomos N, Stipčević M, Torres JP, Toyoshima M, Villoresi P, Walmsley I, Weihs G, Weinfurter H, Zeilinger A, Żukowski M, Ursin R. Space QUEST mission proposal: experimentally testing decoherence due to gravity. New J Phys. 2018;20:20063016.
Article
Google Scholar
Yin J, Cao Y, Li Y-H, Ren J-G, Liao S-K, Zhang L, Cai W-Q, Liu W-Y, Li B, Dai H, Li M, Huang Y-M, Deng L, Li L, Zhang Q, Liu N-L, Chen Y-A, Lu C-Y, Shu R, Peng C-Z, Wang J-Y, Pan J-W. Satellite-to-ground entanglement-based quantum key distribution. Phys Rev Lett. 2017;119:200501.
Article
ADS
Google Scholar
Liao S-K, Cai W-Q, Handsteiner J, Liu B, Yin J, Zhang L, Rauch D, Fink M, Ren J-G, Liu W-Y, Li Y, Shen Q, Cao Y, Li F-Z, Wang J-F, Huang Y-M, Deng L, Xi T, Ma L, Hu T, Li L, Liu N-L, Koidl F, Wang P, Chen Y-A, Wang X-B, Steindorfer M, Kirchner G, Lu C-Y, Shu R, Ursin R, Scheidl T, Peng C-Z, Wang J-Y, Zeilinger A, Pan J-W. Satellite-relayed intercontinental quantum network. Phys Rev Lett. 2018;120:030501.
Article
ADS
Google Scholar
Yang M, Xu F, Ren J-G, Yin J, Li Y, Cao Y, Shen Q, Yong H-L, Zhang L, Liao S-K, Pan J-W, Peng C-Z. Spaceborne, low-noise, single-photon detection for satellite-based quantum communications. Opt Express. 2019;27:36114.
Article
ADS
Google Scholar
Han X, Yong H-L, Xu P, Yang K-X, Li S-L, Wang W-Y, Xue H-J, Li F-Z, Ren J-G, Peng C-Z, Pan J-W. Polarization design for ground-to-satellite quantum entanglement distribution. Opt Express. 2020;28:369.
Article
ADS
Google Scholar
Shen Q, Guan J-Y, Zeng T, Lu Q-M, Huang L, Cao Y, Chen J-P, Tao T-Q, Wu J-C, Hou L, Liao S-K, Ren J-G, Yin J, Jia J-J, Jiang H-F, Peng C-Z, Zhang Q, Pan J-W. Experimental simulation of time and frequency transfer via an optical satellite–ground link at 10−18 instability. Optica. 2021;8:471.
Article
ADS
Google Scholar
Erven C, Heim B, Meyer-Scott E, Bourgoin JP, Laflamme R, Weihs G, Jennewein T. Studying free-space transmission statistics and improving free-space quantum key distribution in the turbulent atmosphere. New J Phys. 2012;14:123018.
Article
Google Scholar
Liao S-K, Cai W-Q, Liu W-Y, Zhang L, Li Y, Ren J-G, Yin J, Shen Q, Cao Y, Li Z-P, Li F-Z, Chen X-W, Sun L-H, Jia J-J, Wu J-C, Jiang X-J, Wang J-F, Huang Y-M, Wang Q, Zhou Y-L, Deng L, Xi T, Ma L, Hu T, Zhang Q, Chen Y-A, Liu N-L, Wang X-B, Zhu Z-C, Lu C-Y, Shu R, Peng C-Z, Wang J-Y, Pan J-W. Satellite-to-ground quantum key distribution. Nature. 2017;549:43–7.
Article
ADS
Google Scholar
Ren J-G, Xu P, Yong H-L, Zhang L, Liao S-K, Yin J, Liu W-Y, Cai W-Q, Yang M, Li L, Yang K-X, Han X, Yao Y-Q, Li J, Wu H-Y, Wan S, Liu L, Liu D-Q, Kuang Y-W, He Z-P, Shang P, Guo C, Zheng R-H, Tian K, Zhu Z-C, Liu N-L, Lu C-Y, Shu R, Chen Y-A, Peng C-Z, Wang J-Y, Pan J-W. Ground-to-satellite quantum teleportation. Nature. 2017;549:70–3.
Article
ADS
Google Scholar
Xu P, Ma Y, Ren J-G, Yong H-L, Ralph TC, Liao S-K, Yin J, Liu W-Y, Cai W-Q, Han X, Wu H-N, Wang W-Y, Li F-Z, Yang M, Lin F-L, Li L, Liu N-L, Chen Y-A, Lu C-Y, Chen Y, Fan J, Peng C-Z, Pan J-W. Satellite testing of a gravitationally induced quantum decoherence model. Science. 2019;366:132–5.
Article
ADS
Google Scholar
Haitz RH. Mechanisms contributing to the noise pulse rate of avalanche diodes. J Appl Phys. 1965;36:3123–31.
Article
ADS
Google Scholar
Cova S, Ghioni M, Lacaita A, Samori C, Zappa F. Avalanche photodiodes and quenching circuits for single-photon detection. Appl Opt. 1996;35:1956–76.
Article
ADS
Google Scholar
Cova S, Ghioni M, Lotito A, Rech I, Zappa F. Evolution and prospects for single-photon avalanche diodes and quenching circuits. J Mod Opt. 2004;51:1267–88.
Article
ADS
Google Scholar
Lacaita A, Francese PA, Zappa F, Cova S. Single-photon detection beyond \(1\ \mu\mathrm{m}\): performance of commercially available germanium photodiodes. Appl Opt. 1994;33:6902–18.
Article
ADS
Google Scholar
Bennett CH, Bessette F, Salvail L, Brassard G, Smolin J. Experimental quantum cryptography. J Cryptol. 1992;5:3–28.
Article
MATH
Google Scholar
Tang Z, Chandrasekara R, Chuan Tan Y, Cheng C, Sha L, Hiang GC, Oi DKL, Ling A. Generation and analysis of correlated pairs of photons aboard a nanosatellite. Phys Rev Appl. 2016;5:054022.
Article
ADS
Google Scholar
Dirks BPF, Ferrario I, Le Pera A, Finocchiaro DV, Desmons M, de Lange D, de Man H, Meskers AJH, Morits J, Neumann NMP, Saathof R, Witvoet G. GEOQKD: quantum key distribution from a geostationary satellite. In: Proc. of SPIE on international conference on space optics—ICSO 2020. vol. 118520J-2. 2021. p. 222–36.
Google Scholar
Günthner K, Khan I, Elser D, Stiller B, Bayraktar Ö, Müller CR, Saucke K, Tröndle D, Heine F, Seel S, Greulich P, Zech H, Gütlich B, Philipp-May S, Marquardt C, Leuchs G. Quantum-limited measurements of optical signals from a geostationary satellite. Optica. 2017;4:611–6.
Article
ADS
Google Scholar
Yoshizawa A, Kaji R, Tsuchida H. A method of discarding after-pulses in single-photon detection for quantum key distribution. Jpn J Appl Phys. 2002;41:6016–7.
Article
ADS
Google Scholar
Giudice AC, Ghioni M, Cova S, Zappa F. A process and deep level evaluation tool: afterpulsing in avalanche junctions. In: European solid-state device research, 2003. ESSDERC’03. 33rd conference. Estoril, Portugal. 2003. p. 347–50.
Chapter
Google Scholar
Itzler MA, Jiang X, Entwistle M. Power law temporal dependence of InGaAs/InP SPAD afterpulsing. J Mod Opt. 2012;59:1472.
Article
ADS
Google Scholar
Humer G, Peev M, Schaeff C, Ramelow S, Stipčević M, Ursin R. A simple and robust method for estimating afterpulsing in single photon detectors. J Lightwave Technol. 2015;33:3098–107.
Article
ADS
Google Scholar
Kim Y-S, Jeong Y-C, Sauge S, Makarov V, Kim Y-H. Ultra-low noise single-photon detector based on Si avalanche photodiode. Rev Sci Instrum. 2011;82:093110.
Article
ADS
Google Scholar
Haitz RH. Model for the electrical behavior of a microplasma. J Appl Phys. 1964;35:1370–6.
Article
ADS
Google Scholar
Bugge AN, Sauge S, Ghazali AMM, Skaar J, Lydersen L, Makarov V. Laser damage helps the eavesdropper in quantum cryptography. Phys Rev Lett. 2014;112:070503.
Article
ADS
Google Scholar
Marsili F, Verma VB, Stern JA, Harrington S, Lita AE, Gerrits T, Vayshenker I, Baek B, Shaw MD, Mirin RP, Nam SW. Detecting single infrared photons with 93% system efficiency. Nat Photonics. 2013;7:210.
Article
ADS
Google Scholar
Cova S, Lacaita A, Ripamonti G. Trapping phenomena in avalanche photodiodes on nanosecond scale. IEEE Electron Device Lett. 1991;12:685–7.
Article
ADS
Google Scholar
The origin of this effect is that at higher temperature, larger semiconductor lattice vibrations lead to higher nonelastic collision probability with carriers [65]. The carriers that collide with the lattice more often need higher electric field to gain sufficient energy for ionization (to generate more carriers and sustain avalanche). This leads to higher breakdown voltage [31, 33, 44].
C30902 and C30921 series high-speed solid state detectors for low light level applications data sheet, http://www.excelitas.com/downloads/DTS_C30902_C30921.pdf, visited 11 Jan 2019.
SPCM-AQRH single photon counting module data sheet, http://www.excelitas.com/Downloads/DTS_SPCM-AQRH.pdf, visited 11 Jan 2019
Lacaita A, Ghioni M, Zappa F, Ripamonti G, Cova S. Recent advances in the detection of optical photons with silicon photodiodes. Nucl Instrum Methods Phys Res, Sect A. 1993;326:290–4.
Article
ADS
Google Scholar
Lacaita A, Ghioni M, Zappa F, Ripamonti G, Cova S. Photon-assisted avalanche spreading in reach-through photodiodes. Appl Phys Lett. 1993;62:606.
Article
ADS
Google Scholar
Cova S, Ripamonti G, Lacaita A. Avalanche semiconductor detector for single optical photons with a time resolution of 60 ps. Nucl Instrum Methods Phys Res, Sect A. 1987;253:482–7.
Article
ADS
Google Scholar
Cova S, Lacaita A, Ghioni M, Ripamonti G. 20-ps timing resolution with single-photon avalanche diodes. Rev Sci Instrum. 1989;60:1104.
Article
ADS
Google Scholar
Spinelli A, Lacaita AL. Physics and numerical simulation of single photon avalanche diodes. IEEE Trans Electron Devices. 1997;44:1931–43.
Article
ADS
Google Scholar
Anisimova E, Higgins BL, Bourgoin J-P, Cranmer M, Choi E, Hudson D, Piche LP, Scott A, Makarov V, Jennewein T. Mitigation of radiation damage of single photon detectors for space applications. EPJ Quantum Technol. 2017;4:10.
Article
Google Scholar
Lim JG, Anisimova E, Higgins BL, Bourgoin J-P, Jennewein T, Makarov V. Laser annealing heals radiation damage in single-photon avalanche photodiodes. EPJ Quantum Technol. 2017;4:11.
Article
Google Scholar
Yin J, Li Y-H, Liao S-K, Yang M, Cao Y, Zhang L, Ren J-G, Cai W-Q, Liu W-Y, Li S-L, Shu R, Huang Y-M, Deng L, Li L, Zhang Q, Liu N-L, Chen Y-A, Lu C-Y, Wang X-B, Xu F, Wang J-Y, Peng C-Z, Ekert AK, Pan J-W. Entanglement-based secure quantum cryptography over 1120 kilometres. Nature. 2020;582:501–5.
Article
ADS
Google Scholar
Bennett CH, Brassard G, Mermin ND. Quantum cryptography without Bell’s theorem. Phys Rev Lett. 1992;68:557–9.
Article
ADS
MathSciNet
MATH
Google Scholar
Ma X, Fung C-HF, Lo H-K. Quantum key distribution with entangled photon sources. Phys Rev A. 2007;76:012307.
Article
ADS
Google Scholar
Yoshizawa A, Kaji R, Tsuchida H. After-pulse-discarding in single-photon detection to reduce bit errors in quantum key distribution. Opt Express. 2003;11:1303–9.
Article
ADS
Google Scholar
ID100VIS visible single-photon detector data sheet, http://www.idquantique.com/photon-counting/photon-counting-modules/id100/, visited 14 Apr 2020
ID120VIS visible single-photon detector data sheet, http://www.idquantique.com/photon-counting/photon-counting-modules/id120/, visited 14 Apr 2020
Pugh CJ, Kaiser S, Bourgoin J-P, Jin J, Sultana N, Agne S, Anisimova E, Makarov V, Choi E, Higgins BL, Jennewein T. Airborne demonstration of a quantum key distribution receiver payload. Quantum Sci Technol. 2017;2:024009.
Article
ADS
Google Scholar
Sze SM, Ng KK. Physics of semiconductor devices. New York: Wiley-Interscience; 2007.
Google Scholar