Arute F et al.. Quantum supremacy using a programmable superconducting processor. Nature. 2019;574:505.

Article
ADS
Google Scholar

Zhong H-S et al.. Quantum computational advantage using photons. Science. 2020;370:1460.

Article
ADS
Google Scholar

DiVincenzo DP. The physical implementation of quantum computation. Fortschr Phys. 2000;48:771.

Article
MATH
Google Scholar

Preskill J. Quantum computing in the NISQ era and beyond. Quantum. 2018-07-30.

Krantz P, Kjaergaard M, Yan F, Orlando TP, Gustavsson S, Oliver WD. A quantum engineer’s guide to superconducting qubits. Appl Phys Rev. 2019;6:021318.

Article
Google Scholar

Nakamura Y, Pashkin YuA, Tsai JS. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature. 1999;398:786.

Article
ADS
Google Scholar

Koch J, Yu TM, Gambetta J, Houck AA, Schuster DI, Majer J, Blais A, Devoret MH, Girvin SM, Schoelkopf RJ. Charge-insensitive qubit design derived from the Cooper pair box. Phys Rev A. 2007;76:042319.

Article
ADS
Google Scholar

The IBM Quantum Experiences is electronically accessed at https://quantum-computing.ibm.com. 2021.

Amico M, Saleem ZH, Kumph M. Experimental study of Shor’s factoring algorithm using the IBM Q Experience. Phys Rev A. 2019;100:012305.

Article
ADS
Google Scholar

Mandviwalla A, Ohshiro K, Ji B. Implementing Grover’s algorithm on the IBM quantum computers. In: 2018 IEEE international conference on big data (big data). 2018. p. 2531.

Chapter
Google Scholar

Casanova J, Mezzacapo A, Lamata L, Solano E. Quantum simulation of interacting fermion lattice models in trapped ions. Phys Rev Lett. 2012;108:190502.

Article
ADS
Google Scholar

Barends R, Lamata L, Kelly J, Garcıa-Alvarez L, Fowler AG, Megrant A, Jeffrey E, White TC, Sank D, Mutus JY, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Hoi IC, Neill C, O’Malley PJJ, Quintana C, Roushan P, Vainsencher A, Wenner J, Solano E, Martinis JM. Digital quantum simulation of fermionic models with a superconducting circuit. Nat Commun. 2015;6:7654.

Article
ADS
Google Scholar

Arguelles CA, Jones BJP. Neutrino oscillations in a quantum processor. Phys Rev Res. 2019;1:033176.

Article
Google Scholar

Martinez EA, Muschik CA, Schindler P, Nigg D, Erhard A, Heyl M, Hauke P, Dalmonte M, Monz T, Zoller P, Blatt R. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer. Nature. 2016;534:516.

Article
ADS
Google Scholar

Fitzpatrick M, Sundaresan NM, Li ACY, Koch J, Houck AA. Observation of a dissipative phase transition in a one-dimensional circuit QED lattice. Phys Rev X. 2017;7:011016.

Google Scholar

Kandala A, Mezzacapo A, Temme K, Takita M, Brink M, Chow JM, Gambetta JM. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature. 2017;549:242.

Article
ADS
Google Scholar

Garcia-Martin D, Sierra G. Five experimental tests on the 5-qubit IBM quantum computer. J Appl Math Phys. 2018;6:1460.

Google Scholar

Sisodia M. Comparison the performance of five-qubit IBM quantum computers in terms of Bell states preparation. Quantum Inf Process. 2020;19:214.

Article
ADS
MathSciNet
Google Scholar

Schwaller N, Dupertuis M-A, Javerzac-Galy C. Evidence of the entanglement constraint on wave-particle duality using the IBM Q quantum computer. Phys Rev A. 2021;103:022409.

Article
ADS
Google Scholar

Ku H-Y, Lambert N, Chan F-J, Emary C, Chen Y-N, Nori F. Experimental test of non-macrorealistic cat states in the cloud. npj Quantum Inf. 2020;6:98.

Article
ADS
Google Scholar

Devitt SJ. Performing quantum computing experiments in the cloud. Phys Rev A. 2016;94:032329.

Article
ADS
Google Scholar

The code in this work can be accessed at: https://github.com/mx73/Testing-QM-on-NISQ.

Ma X-S, Kofler J, Zeilinger A. Delayed-choice gedanken experiments and their realizations. Rev Mod Phys. 2016;88:015005.

Article
ADS
Google Scholar

Scully MO, DrL̆l K. Quantum eraser: a proposed photon correlation experiment concerning observation and “delayed choice” in quantum mechanics. Phys Rev A. 1982;25:2208.

Article
ADS
Google Scholar

Kim YH, Yu R, Kulik SP, Scully MO, Shih Y. Delayed “choice” quantum eraser. Phys Rev Lett. 2000;84:1.

Article
ADS
Google Scholar

Kaiser F, Coudreau T, Milman P, Ostrowsky DB, Tanzilli S. Entanglement-enabled delayed-choice experiment. Science. 2012;338:637.

Article
ADS
Google Scholar

Walborn SP, Terra Cunha MO, Padua S, Monken CH. Double-slit quantum eraser. Phys Rev A. 2002;65:033818.

Article
ADS
Google Scholar

Bienfait A, Zhong YP, Chang H-S, Chou M-H, Conner CR, Dumur E, Grebel J, Peairs GA, Povey RG, Satzinger KJ, Cleland AN. Quantum erasure using entangled surface acoustic phonons. Phys Rev X. 2020;10:021055.

Google Scholar

Ionicioiu R, Terno DR. Proposal for a quantum delayed-choice experiment. Phys Rev Lett. 2011;107:230406.

Article
ADS
Google Scholar

Elitzur AC, Vaidman L. Quantum mechanical interaction-free measurements. Found Phys. 1993;23:987.

Article
ADS
Google Scholar

Vaidman L. The meaning of the interaction-free measurements. Found Phys. 2003;33:491.

Article
MathSciNet
Google Scholar

Kwiat P, Weinfurter H, Herzog T, Kasevich MA, Zeilinger A. Interaction-free measurement. Phys Rev Lett. 1995;74:4763.

Article
ADS
Google Scholar

Turner AE, Johnson CW, Kruit P, McMorran BJ. Interaction free measurement with electrons. Phys Rev Lett. 2021;127:110401.

Article
ADS
Google Scholar

Robens C, Alt W, Emary C, Meschede D, Alberti A. Atomic “bomb testing”: the Elitzur–Vaidman experiment violates the Leggett–Garg inequality. Appl Phys B. 2017;123:11.

ADS
Google Scholar

Chirolli L, Strambini E, Giovannetti V, Taddei F, Piazza V, Fazio R, Beltram F, Burkard G. Electronic implementations of interaction-free measurements. Phys Rev B. 2010;82:045403.

Article
ADS
Google Scholar

Paraoanu GS. Interaction free measurements with superconducting qubits. Phys Rev Lett. 2006;97:180406.

Article
ADS
Google Scholar

Temme K, Bravyi S, Gambetta JM. Error mitigation for short-depth quantum circuits. Phys Rev Lett. 2017;119:180509.

Article
ADS
MathSciNet
Google Scholar

Misra B, Sudarshan ECG. The Zeno’s paradox in quantum theory. J Math Phys. 1977;18:756.

Article
ADS
MathSciNet
Google Scholar

Hardy L. Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories. Phys Rev Lett. 1992;68:2981.

Article
ADS
MathSciNet
MATH
Google Scholar

Hardy L. Nonlocality for two particles without inequalities for almost all entangled states. Phys Rev Lett. 1993;71:1665.

Article
ADS
MathSciNet
MATH
Google Scholar

Aharonov Y, Botero A, Popescue S, Reznik B, Tollaksen J. Revisiting Hardy’s paradox: counterfactual statements, real measurements, entanglement and weak values. Phys Lett A. 2002;301:130–8.

Article
ADS
MathSciNet
MATH
Google Scholar

Kedem Y, Vaidman L. Modular values and weak values of quantum observables. Phys Rev Lett. 2010;105:230401.

Article
ADS
Google Scholar

Ho LB, Imoto N. Full characterization of modular values for finite-dimensional systems. Phys Lett A. 2016;380:2129–35.

Article
ADS
MathSciNet
MATH
Google Scholar

Irvine W, Hodelin J, Simon C, Bouwmeester D. Realization of Hardy’s thought experiment with photons. Phys Rev Lett. 2005;95:030401.

Article
ADS
MathSciNet
MATH
Google Scholar

Lundeen JS, Steinberg AM. Experimental joint weak measurement on a photon pair as a probe of Hardy’s paradox. Phys Rev Lett. 2009;102:020404.

Article
ADS
Google Scholar

Yokota K, Yamamoto T, Koashi M, Imoto N. Direct observation of Hardy’s paradox by joint weak measurement with an entangled photon pair. New J Phys. 2009;11:033011.

Article
Google Scholar

Brunner N, Cavalcanti D, Pironio S, Scarani V, Wehner S. Bell nonlocality. Rev Mod Phys. 2014;86:419.

Article
ADS
Google Scholar

Aspect A, Dalibard J, Roger G. Experimental test of Bell’s inequalities using time-varying analyzers. Phys Rev Lett. 1982;49:1804.

Article
ADS
MathSciNet
Google Scholar

Fedrizzi A, Ursin R, Herbst T, Nespoli M, Prevedel R, Scheidl T, Tiefenbacher F, Jennewein T, Zeilinger A. High-fidelity transmission of entanglement over a high-loss free-space channel. Nat Phys. 2009;5:389.

Article
Google Scholar

White AG, James DFV, Eberhard PH, Kwiat PG. Nonmaximally entangled states: production, characterization, and utilization. Phys Rev Lett. 1999;83:3103.

Article
ADS
Google Scholar

Luo YH, Su HY, Huang HL, Wang XL, Yang T, Li L, Liu NL, Chen JL, Lu CY, Pan JW. Experimental test of generalized Hardy’s paradox. Sci Bull. 2018;63:1611.

Article
Google Scholar

Matsukevich DN, Maunz P, Moehring DL, Olmschenk S, Monroe C. Bell inequality violation with two remote atomic qubits. Phys Rev Lett. 2008;100:150404.

Article
ADS
Google Scholar

Hofmann J, Krug M, Ortegel N, Gerard L, Weber M, Rosenfeld W, Weinfurter H. Heralded entanglement between widely separated atoms. Science. 2012;337:72.

Article
ADS
Google Scholar

Neeley M, Bialczak RC, Lenander M, Lucero E, Mariantoni M, O’Connell AD, Sank D, Wang H, Weides M, Wenner J, Yin Y, Yamamoto T, Cleland AN, Martinis JM. Generation of three-qubit entangled states using superconducting phase qubits. Nature. 2010;467:570.

Article
ADS
Google Scholar

DiCarlo L, Reed MD, Sun L, Johnson BR, Chow JM, Gambetta JM, Frunzio L, Girvin SM, Devoret MH, Schoelkopf RJ. Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature. 2010;467:574.

Article
ADS
Google Scholar

Bell JS. On the Einstein Podolsky Rosen paradox. Physics. 1964;1:195–200.

Article
MathSciNet
Google Scholar

Kochen S, Specker EP. The problem of hidden variables in quantum mechanics. J Math Mech. 1967;17:59–87.

MathSciNet
MATH
Google Scholar