Hadfield RH. Single-photon detectors for optical quantum information applications. Nat Photonics. 2009;3:696–705.
Article
ADS
Google Scholar
Makarov V, Anisimov A, Skaar J. Effects of detector efficiency mismatch on security of quantum cryptosystems. Phys Rev A. 2006;74:022313. Erratum ibid. 2008;78:019905.
Article
ADS
Google Scholar
Zhao Y, Fung C-HF, Qi B, Chen C, Lo H-K. Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys Rev A. 2008;78:042333.
Article
ADS
Google Scholar
Lydersen L, Wiechers C, Wittmann C, Elser D, Skaar J, Makarov V. Hacking commercial quantum cryptography systems by tailored bright illumination. Nat Photonics. 2010;4:686–9.
Article
ADS
Google Scholar
Lydersen L, Skaar J. Security of quantum key distribution with bit and basis dependent detector flaws. Quantum Inf Comput. 2010;10:60–76.
MathSciNet
MATH
Google Scholar
Lydersen L, Wiechers C, Wittmann C, Elser D, Skaar J, Makarov V. Thermal blinding of gated detectors in quantum cryptography. Opt Express. 2010;18:27938–54.
Article
ADS
Google Scholar
Lydersen L, Skaar J, Makarov V. Tailored bright illumination attack on distributed-phase-reference protocols. J Mod Opt. 2011;58:680–5.
Article
ADS
Google Scholar
Gerhardt I, Liu Q, Lamas-Linares A, Skaar J, Kurtsiefer C, Makarov V. Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nat Commun. 2011;2:349.
Article
ADS
Google Scholar
Huang A, Sajeed S, Chaiwongkhot P, Soucarros M, Legré M, Makarov V. Testing random-detector-efficiency countermeasure in a commercial system reveals a breakable unrealistic assumption. IEEE J Quantum Electron. 2016;52:8000211.
Article
Google Scholar
Qian Y-J, He D-Y, Wang S, Chen W, Yin Z-Q, Guo G-C, Han Z-F. Hacking the quantum key distribution system by exploiting the avalanche-transition region of single-photon detectors. Phys Rev Appl. 2018;10:064062.
Article
ADS
Google Scholar
Fei Y-Y, Meng X-D, Gao M, Wang H, Ma Z. Quantum man-in-the-middle attack on the calibration process of quantum key distribution. Sci Rep. 2018;8:4283.
Article
ADS
Google Scholar
Lydersen L, Akhlaghi MK, Majedi AH, Skaar J, Makarov V. Controlling a superconducting nanowire single-photon detector using tailored bright illumination. New J Phys. 2011;13:113042.
Article
Google Scholar
Tanner MG, Makarov V, Hadfield RH. Optimised quantum hacking of superconducting nanowire single-photon detectors. Opt Express. 2014;22:6734–48.
Article
ADS
Google Scholar
Elezov M, Ozhegov R, Goltsman G, Makarov V. Countermeasure against bright-light attack on superconducting nanowire single-photon detector in quantum key distribution. Opt Express. 2019;27:30979–88.
Article
ADS
Google Scholar
Koehler-Sidki A, Lucamarini M, Dynes JF, Roberts GL, Sharpe AW, Yuan Z, Shields AJ. Intensity modulation as a preemptive measure against blinding of single-photon detectors based on self-differencing cancellation. Phys Rev A. 2018;98:022327.
Article
ADS
Google Scholar
Qian Y-J, He D-Y, Wang S, Chen W, Yin Z-Q, Guo G-C, Han Z-F. Robust countermeasure against detector control attack in a practical quantum key distribution system. Optica. 2019;6:1178–84.
Article
ADS
Google Scholar
Lo H-K, Curty M, Qi B. Measurement-device-independent quantum key distribution. Phys Rev Lett. 2012;108:130503.
Article
ADS
Google Scholar
Lucamarini M, Yuan ZL, Dynes JF, Shields AJ. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature. 2018;557:400.
Article
ADS
Google Scholar
Berggren KK, Dauler EA, Kerman AJ, Nam S-W, Rosenberg D. Detectors based on superconductors. In: Experimental methods in the physical sciences. vol. 45. Amsterdam: Elsevier; 2013. p. 185–216.
Google Scholar
Eisaman MD, Fan J, Migdall A, Polyakov SV. Single-photon sources and detectors. Rev Sci Instrum. 2011;82:071101.
Article
ADS
Google Scholar
Zhang W, Geng Y, Wang Z, Zhong J, Li P, Miao W, Ren Y, Yao Q, Wang J, Shi S. Development of titanium-based transition-edge single-photon detector. IEEE Trans Appl Supercond. 2019;29:2100505.
Google Scholar
Konno T, Takasu S, Hattori K, Fukuda D. Development of an optical transition-edge sensor array. J Low Temp Phys. 2020;199:27–33.
Article
ADS
Google Scholar
Niwa K, Numata T, Hattori K, Fukuda D. Few-photon color imaging using energy-dispersive superconducting transition-edge sensor spectrometry. Sci Rep. 2017;7:45660.
Article
ADS
Google Scholar
Fukuda D, Niwa K, Hattori K, Inoue S, Kobayashi R, Numata T. Confocal microscopy imaging with an optical transition edge sensor. J Low Temp Phys. 2018;193:1228–35.
Article
ADS
Google Scholar
Nagler PC, Greenhouse MA, Moseley SH, Rauscher BJ, Sadleir JE. Development of transition edge sensor detectors optimized for single-photon spectroscopy in the optical and near-infrared. Proc SPIE. 2018;10709:1070931.
Google Scholar
Höpker JP, Gerrits T, Lita A, Krapick S, Herrmann H, Ricken R, Quiring V, Mirin R, Nam SW, Silberhorn C, Bartley TJ. Integrated transition edge sensors on titanium in-diffused lithium niobate waveguides. APL Photon. 2019;4:056103.
Article
ADS
Google Scholar
Helversen MV, Böhm J, Schmidt M, Gschrey M, Schulze J-H, Strittmatter A, Rodt S, Beyer J, Heindel T, Reitzenstein S. Quantum metrology of solid-state single-photon sources using photon-number-resolving detectors. New J Phys. 2019;21:035007.
Article
Google Scholar
Lita AE, Miller AJ, Nam SW. Counting near-infrared single-photons with 95% efficiency. Opt Express. 2008;16:3032–40.
Article
ADS
Google Scholar
Fukuda D, Fujii G, Numata T, Yoshizawa A, Tsuchida H, Fujino H, Ishii H, Itatani T, Inoue S, Zama T. Photon number resolving detection with high speed and high quantum efficiency. Metrologia. 2009;46:S288–S292.
Article
ADS
Google Scholar
Miller AJ, Lita AE, Calkins B, Vayshenker I, Gruber SM, Nam SW. Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent. Opt Express. 2011;19:9102–10.
Article
ADS
Google Scholar
Giustina M, Versteegh MAM, Wengerowsky S, Handsteiner J, Hochrainer A, Phelan K, Steinlechner F, Kofler J, Larsson J-A, Abellán C, Amaya W, Pruneri V, Mitchell MW, Beyer J, Gerrits T, Lita AE, Shalm LK, Nam SW, Scheidl T, Ursin R, Wittmann B, Zeilinger A. Significant-loophole-free test of Bell’s theorem with entangled photons. Phys Rev Lett. 2015;115:250401.
Article
ADS
Google Scholar
Xu B, Peng X, Guo H. Passive scheme with a photon-number-resolving detector for monitoring the untrusted source in a plug-and-play quantum-key-distribution system. Phys Rev A. 2010;82:042301.
Article
ADS
Google Scholar
Irwin KD, Hilton GC. Transition-edge sensors. In: Topics appl. phys. vol. 99. Berlin: Springer; 2005. p. 63–150.
Google Scholar
Irwin KD. An application of electrothermal feedback for high resolution cryogenic particle detection. Appl Phys Lett. 1995;66:1998–2000.
Article
ADS
Google Scholar
Drung D, Hinnrichs C, Barthelmess H-J. Low-noise ultra-high-speed dc SQUID readout electronics. Supercond Sci Technol. 2006;19:S235.
Article
ADS
Google Scholar
Fukuda D, Fujii G, Numata T, Amemiya K, Yoshizawa A, Tsuchida H, Fujino H, Ishii H, Itatani T, Inoue S, Zama T. Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling. Opt Express. 2011;19:870–5.
Article
ADS
Google Scholar
Rosenberg D, Lita AE, Miller AJ, Nam SW. Noise-free high-efficiency photon-number-resolving detectors. Phys Rev A. 2005;71:061803.
Article
ADS
Google Scholar
Joshi S. Entangled photon pairs: efficient generation and detection, and bit commitment. Ph.D. thesis. National University of Singapore; 2014.
Hattori K, Inoue S, Kobayashi R, Niwa K, Numata T, Fukuda D. Optical transition-edge sensors: dependence of system detection efficiency on wavelength. IEEE Trans Instrum Meas. 2019;68:2253–9.
Article
Google Scholar
Lydersen L, Jain N, Wittmann C, Marøy Ø, Skaar J, Marquardt C, Makarov V, Leuchs G. Superlinear threshold detectors in quantum cryptography. Phys Rev A. 2011;84:032320.
Article
ADS
Google Scholar
Bennett CH, Brassard G. Quantum cryptography: public key distribution and coin tossing. In: Proc. international conference on computers, systems, and signal processing. Bangalore, India. New York: IEEE Press; 1984. p. 175–9.
Google Scholar
Gottesman D, Lo H-K, Lütkenhaus N, Preskill J. Security of quantum key distribution with imperfect devices. Quantum Inf Comput. 2004;4:325–60.
MathSciNet
MATH
Google Scholar