Arbekov IM, Molotkov SN. Secret keys agreement in communication networks with quantum key distribution and trusted nodes. Laser Phys Lett. 2020;17(5):055202. https://doi.org/10.1088/1612-202x/ab77ce.
Article
ADS
Google Scholar
Erven C, Heim B, Meyer-Scott E, Bourgoin JP, Laflamme R, Weihs G, Jennewein T. Studying free-space transmission statistics and improving free-space quantum key distribution in the turbulent atmosphere. New J Phys. 2012;14(12):123018. https://doi.org/10.1088/1367-2630/14/12/123018.
Article
Google Scholar
Kaur E, Wilde MM, Winter A. Fundamental limits on key rates in device-independent quantum key distribution. New J Phys. 2020;22(2):023039. https://doi.org/10.1088/1367-2630/ab6eaa.
Article
MathSciNet
Google Scholar
Lütkenhaus N, Shields AJ. Focus on quantum cryptography: theory and practice. New J Phys. 2009;11(4):045005. https://doi.org/10.1088/1367-2630/11/4/045005.
Article
Google Scholar
Stucki D, Legré M, Buntschu F, Clausen B, Felber N, Gisin N, Henzen L, Junod P, Litzistorf G, Monbaron P, Monat L, Page JB, Perroud D, Ribordy G, Rochas A, Robyr S, Tavares J, Thew R, Trinkler P, Ventura S, Voirol R, Walenta N, Zbinden H. Long-term performance of the swissquantum quantum key distribution network in a field environment. New J Phys. 2011;13(12):123001. https://doi.org/10.1088/1367-2630/13/12/123001.
Article
Google Scholar
Bennett CH, Brassard G. Quantum cryptography: public key distribution and coin tossing. Theor Comput Sci. 2014;560:7–11. https://doi.org/10.1016/j.tcs.2014.05.025.
Article
MathSciNet
MATH
Google Scholar
Chen H, Wang J, Tang B, Li Z, Liu B, Sun S. Field demonstration of time-bin reference-frame-independent quantum key distribution via an intracity free-space link. Opt Lett. 2020;45(11):3022–5. https://doi.org/10.1364/OL.392742.
Article
ADS
Google Scholar
Xue Y, Shi L, Chen W, Yin Z, Fan-Yuan G-J, Fu H, Lu Q, Wei J. Improving the performance of reference-frame-independent quantum key distribution through a turbulent atmosphere. Phys Rev A. 2020;102(6):062602. https://doi.org/10.1103/PhysRevA.102.062602.
Article
ADS
Google Scholar
Chen W, Han Z, Zhang T, Wen H, Yin Z, Xu F, Wu Q, Liu Y, Zhang Y, Mo X, Gui Y, Wei G, Guo G. Field experiment on a “star type” metropolitan quantum key distribution network. IEEE Photonics Technol Lett. 2009;21(9):575–7. https://doi.org/10.1109/LPT.2009.2015058.
Article
ADS
Google Scholar
Wang S, Chen W, Yin Z-Q, He D-Y, Hui C, Hao P-L, Fan-Yuan G-J, Wang C, Zhang L-J, Kuang J, Liu S-F, Zhou Z, Wang Y-G, Guo G-C, Han Z-F. Practical gigahertz quantum key distribution robust against channel disturbance. Opt Lett. 2018;43(9):2030–3. https://doi.org/10.1364/OL.43.002030.
Article
ADS
Google Scholar
Wang X-B, Yu Z-W, Hu X-L. Twin-field quantum key distribution with large misalignment error. Phys Rev A. 2018;98(6):062323. https://doi.org/10.1103/PhysRevA.98.062323.
Article
ADS
Google Scholar
Kozlowski W, Wehner S. Towards large-scale quantum networks. New York: Association for Computing Machinery; 2019. https://doi.org/10.1145/3345312.3345497.
Book
Google Scholar
Hughes RJ, Nordholt JE. Quantum space race heats up. Nat Photonics. 2017;11(8):456–8. https://doi.org/10.1038/nphoton.2017.124.
Article
Google Scholar
Hughes RJ, Nordholt JE, Derkacs D, Peterson CG. Practical free-space quantum key distribution over 10 km in daylight and at night. New J Phys. 2002;4:43. https://doi.org/10.1088/1367-2630/4/1/343.
Article
Google Scholar
Bedington R, Arrazola JM, Ling A. Progress in satellite quantum key distribution. npj Quantum Inf. 2017;3(1):30. https://doi.org/10.1038/s41534-017-0031-5.
Article
ADS
Google Scholar
Liao S-K, Cai W-Q, Handsteiner J, Liu B, Yin J, Zhang L, Rauch D, Fink M, Ren J-G, Liu W-Y, Li Y, Shen Q, Cao Y, Li F-Z, Wang J-F, Huang Y-M, Deng L, Xi T, Ma L, Hu T, Li L, Liu N-L, Koidl F, Wang P, Chen Y-A, Wang X-B, Steindorfer M, Kirchner G, Lu C-Y, Shu R, Ursin R, Scheidl T, Peng C-Z, Wang J-Y, Zeilinger A, Pan J-W. Satellite-relayed intercontinental quantum network. Phys Rev Lett. 2018;120(3):030501. https://doi.org/10.1103/PhysRevLett.120.030501.
Article
ADS
Google Scholar
Schmitt-Manderbach T, Weier H, Fürst M, Ursin R, Tiefenbacher F, Scheidl T, Perdigues J, Sodnik Z, Kurtsiefer C, Rarity JG, Zeilinger A, Weinfurter H. Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys Rev Lett. 2007;98(1):010504. https://doi.org/10.1103/PhysRevLett.98.010504.
Article
ADS
Google Scholar
Vallone G, Bacco D, Dequal D, Gaiarin S, Luceri V, Bianco G, Villoresi P. Experimental satellite quantum communications. Phys Rev Lett. 2015;115(4):040502. https://doi.org/10.1103/PhysRevLett.115.040502.
Article
ADS
Google Scholar
Yin H-L, Chen T-Y, Yu Z-W, Liu H, You L-X, Zhou Y-H, Chen S-J, Mao Y, Huang M-Q, Zhang W-J, Chen H, Li MJ, Nolan D, Zhou F, Jiang X, Wang Z, Zhang Q, Wang X-B, Pan J-W. Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys Rev Lett. 2016;117(19):190501. https://doi.org/10.1103/PhysRevLett.117.190501.
Article
ADS
Google Scholar
Calderaro L, Agnesi C, Dequal D, Vedovato F, Schiavon M, Santamato A, Luceri V, Bianco G, Vallone G, Villoresi P. Towards quantum communication from global navigation satellite system. Quantum Sci Technol. 2018;4(1):015012. https://doi.org/10.1088/2058-9565/aaefd4.
Article
ADS
Google Scholar
Chen Y-A, Zhang Q, Chen T-Y, Cai W-Q, Liao S-K, Zhang J, Chen K, Yin J, Ren J-G, Chen Z, Han S-L, Yu Q, Liang K, Zhou F, Yuan X, Zhao M-S, Wang T-Y, Jiang X, Zhang L, Liu W-Y, Li Y, Shen Q, Cao Y, Lu C-Y, Shu R, Wang J-Y, Li L, Liu N-L, Xu F, Wang X-B, Peng C-Z, Pan J-W. An integrated space-to-ground quantum communication network over 4600 kilometres. Nature. 2021;589(7841):214–9. https://doi.org/10.1038/s41586-020-03093-8.
Article
ADS
Google Scholar
Nauerth S, Moll F, Rau M, Fuchs C, Horwath J, Frick S, Weinfurter H. Air-to-ground quantum communication. Nat Photonics. 2013;7(5):382–6. https://doi.org/10.1038/nphoton.2013.46.
Article
ADS
Google Scholar
Liu H-Y, Tian X-H, Gu C, Fan P, Ni X, Yang R, Zhang J-N, Hu M, Guo J, Cao X, Hu X, Zhao G, Lu Y-Q, Gong Y-X, Xie Z, Zhu S-N. Optical-relayed entanglement distribution using drones as mobile nodes. Phys Rev Lett. 2021;126(2):020503. https://doi.org/10.1103/PhysRevLett.126.020503.
Article
ADS
Google Scholar
Pugh CJ, Kaiser S, Bourgoin J-P, Jin J, Sultana N, Agne S, Anisimova E, Makarov V, Choi E, Higgins BL, Jennewein T. Airborne demonstration of a quantum key distribution receiver payload. Quantum Sci Technol. 2017;2(2):024009. https://doi.org/10.1088/2058-9565/aa701f.
Article
ADS
Google Scholar
DeCesare A, Snyder R, Carvalho D, Miller W, Alsing P, Ahn D. Toward mobile free-space optical QKD: characterization of a polarization-based receiver. SPIE defense + commercial sensing. vol. 11391. Bellingham: SPIE; 2020. https://doi.org/10.1117/12.2567295.
Book
Google Scholar
Liu H, Tian X-H, Gu C, Fan P, Ni X, Yang R, Zhang J-N, Hu M, Guo J, Cao X, Hu X, Zhao G, Lu Y-Q, Gong Y-X, Xie Z, Zhu S-N. Drone-based entanglement distribution towards mobile quantum networks. Nat Sci Rev. 2020;7:921–8. https://doi.org/10.1093/nsr/nwz227.
Article
ADS
Google Scholar
Zhang M, Zhang L, Wu J, Yang S, Wan X, He Z, Jia J, Citrin DS, Wang J. Detection and compensation of basis deviation in satellite-to-ground quantum communications. Opt Express. 2014;22(8):9871–86. https://doi.org/10.1364/OE.22.009871.
Article
ADS
Google Scholar
Moll F, Botter T, Marquardt C, Pusey D, Shrestha A, Reeves A, Jaksch K, Gunthner K, Bayraktar O, Mueller-Hirschkorn C, Gallardo AD, Diaz Gonzalez D, Rosenfeld W, Freiwang P, Leuchs G, Weinfurter H. Stratospheric QKD: feasibility analysis and free-space optics system concept. SPIE security + defence. vol. 11167. Strasbourg: SPIE; 2019. https://doi.org/10.1117/12.2539076.
Book
Google Scholar
Yan X, Zhang P-F, Zhang J-H, Qiao C-H, Fan C-Y. Quantum polarization fluctuations of partially coherent dark hollow beams in non-Kolmogorov turbulence atmosphere. Chin Phys B. 2016;25(8):084204. https://doi.org/10.1088/1674-1056/25/8/084204.
Article
ADS
Google Scholar
Bonato C, Aspelmeyer M, Jennewein T, Pernechele C, Villoresi P, Zeilinger A. Influence of satellite motion on polarization qubits in a space-Earth quantum communication link. Opt Express. 2006;14(21):10050–9. https://doi.org/10.1364/OE.14.010050.
Article
ADS
Google Scholar
Du X, Zhao D, Korotkova O. Changes in the statistical properties of stochastic anisotropic electromagnetic beams on propagation in the turbulent atmosphere. Opt Express. 2007;15(25):16909–15. https://doi.org/10.1364/OE.15.016909.
Article
ADS
Google Scholar
Toyoshima M, Takenaka H, Takayama Y. Atmospheric turbulence-induced fading channel model for space-to-ground laser communications links. Opt Express. 2011;19(17):15965–75. https://doi.org/10.1364/OE.19.015965.
Article
ADS
Google Scholar
Tyler GA, Boyd RW. Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum. Opt Lett. 2009;34(2):142–4. https://doi.org/10.1364/OL.34.000142.
Article
ADS
Google Scholar
Anufriev AV, Zimin YA, Vol’pov AL, Matveev IN. Change in the polarization of light in a turbulent atmosphere. Sov J Quantum Electron. 1983;13(12):1627–8. https://doi.org/10.1070/qe1983v013n12abeh005021.
Article
ADS
Google Scholar
Shan X, Sun X, Luo J, Tan Z, Zhan M. Free-space quantum key distribution with rb vapor filters. Appl Phys Lett. 2006;89:191121.
Article
ADS
Google Scholar
Yin J, Ren J-G, Lu H, Cao Y, Yong H-L, Wu Y-P, Liu C, Liao S-K, Zhou F, Jiang Y, Cai X-D, Xu P, Pan G-S, Jia J-J, Huang Y-M, Yin H, Wang J-Y, Chen Y-A, Peng C-Z, Pan J-W. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature. 2012;488(7410):185–8. https://doi.org/10.1038/nature11332.
Article
ADS
Google Scholar
Liao S-K, Yong H-L, Liu C, Shentu G-L, Li D-D, Lin J, Dai H, Zhao S-Q, Li B, Guan J-Y, Chen W, Gong Y-H, Li Y, Lin Z-H, Pan G-S, Pelc JS, Fejer MM, Zhang W-Z, Liu W-Y, Yin J, Ren J-G, Wang X-B, Zhang Q, Peng C-Z, Pan J-W. Long-distance free-space quantum key distribution in daylight towards inter-satellite communication. Nat Photonics. 2017;11(8):509–13. https://doi.org/10.1038/nphoton.2017.116.
Article
Google Scholar
Buttler WT, Hughes RJ, Lamoreaux SK, Morgan GL, Nordholt JE, Peterson CG. Daylight quantum key distribution over 1.6 km. Phys Rev Lett. 2000;84(24):5652–5. https://doi.org/10.1103/PhysRevLett.84.5652.
Article
ADS
Google Scholar
Moll F, Nauerth S, Fuchs C, Horwath J, Rau M, Weinfurter H. Communication system technology for demonstration of BB84 quantum key distribution in optical aircraft downlinks. SPIE optical engineering + applications. vol. 8517. San Diego: SPIE; 2012. https://doi.org/10.1117/12.929739.
Book
Google Scholar
Vallone G, Dequal D, Tomasin M, Vedovato F, Schiavon M, Luceri V, Bianco G, Villoresi P. Interference at the single photon level along satellite-ground channels. Phys Rev Lett. 2016;116(25):253601. https://doi.org/10.1103/PhysRevLett.116.253601.
Article
ADS
Google Scholar
Gordeyev S, Smith AE, Cress JA, Jumper EJ. Experimental studies of aero-optical properties of subsonic turbulent boundary layers. J Fluid Mech. 2014;740:214.
Article
ADS
Google Scholar
Gordeyev S, Rennie MR, Cain AB, Hayden T. Aero-optical measurements of high-Mach supersonic boundary layers. In: 46th AIAA plasmadynamics and lasers conference. 2015. p. 3246.
Google Scholar
Ma X, Qi B, Zhao Y, Lo H-K. Practical decoy state for quantum key distribution. Phys Rev A. 2005;72(1):012326. https://doi.org/10.1103/PhysRevA.72.012326.
Article
ADS
Google Scholar
Sun X-W, Yang X-L, Liu W. Aero-optical suppression for supersonic turbulent boundary layer. J Turbul. 2021;22(1):1–25. https://doi.org/10.1080/14685248.2020.1849709.
Article
ADS
MathSciNet
Google Scholar
Merzkirch W. 3 - optical flow visualization. In: Flow visualization. San Diego: Academic Press; 1987. p. 115–231. https://doi.org/10.1016/B978-0-08-050658-6.50007-2. https://www.sciencedirect.com/science/article/pii/B9780080506586500072.
Chapter
MATH
Google Scholar
Jones M, Bender E. CFD-based computer simulation of optical turbulence through aircraft flowfields and wakes. In: Fluid dynamics and co-located conferences. Anaheim: American Institute of Aeronautics and Astronautics; 2001. p. 2001–798. https://doi.org/10.2514/6.2001-2798.
Chapter
Google Scholar
Guo G, Liu H, Zhang B. Aero-optical effects of an optical seeker with a supersonic jet for hypersonic vehicles in near space. Appl Opt. 2016;55(17):4741–51. https://doi.org/10.1364/AO.55.004741.
Article
ADS
Google Scholar
Ding H, Yi S, Zhao X, Yi J, He L. Research on aero-optical prediction of supersonic turbulent boundary layer based on aero-optical linking equation. Opt Express. 2018;26(24):31317–32. https://doi.org/10.1364/OE.26.031317.
Article
ADS
Google Scholar
Ding H, Yi S, Zhu Y, He L. Experimental investigation on aero-optics of supersonic turbulent boundary layers. Appl Opt. 2017;56(27):7604–10. https://doi.org/10.1364/AO.56.007604.
Article
ADS
Google Scholar
Neumann SP, Joshi SK, Fink M, Scheidl T, Blach R, Scharlemann C, Abouagaga S, Bambery D, Kerstel E, Barthelemy M, Ursin R. Q3sat: quantum communications uplink to a 3u cubesat—feasibility & design. EPJ Quantum Technol. 2018;5(1):4. https://doi.org/10.1140/epjqt/s40507-018-0068-1.
Article
Google Scholar
Ross TS. Limitations and applicability of the Maréchal approximation. Appl Opt. 2009;48(10):1812–8. https://doi.org/10.1364/AO.48.001812.
Article
ADS
Google Scholar