DiVincenzo DP. The physical implementation of quantum computation. Fortschr Phys. 2000;48(9–11):771–83. https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E.

Article
MATH
Google Scholar

Wehner S, Elkouss D, Hanson R. Quantum Internet: a vision for the road ahead. Science. 2018;362(6412):9288. https://doi.org/10.1126/science.aam9288.

Article
ADS
MathSciNet
MATH
Google Scholar

Peruzzo A, McClean J, Shadbolt P, Yung M-H, Zhou X-Q, Love PJ, Aspuru-Guzik A, O’Brien JL. A variational eigenvalue solver on a photonic quantum processor. Nat Commun. 2014;5(1):4213. https://doi.org/10.1038/ncomms5213.

Article
ADS
Google Scholar

Knill E, Laflamme R, Milburn GJ. A scheme for efficient quantum computation with linear optics. Nature. 2001;409(6816):46–52. https://doi.org/10.1038/35051009.

Article
ADS
Google Scholar

Kok P, Munro WJ, Nemoto K, Ralph TC, Dowling JP, Milburn GJ. Linear optical quantum computing with photonic qubits. Rev Mod Phys. 2007;79:135–74. https://doi.org/10.1103/RevModPhys.79.135.

Article
ADS
Google Scholar

Lodahl P. Quantum-dot based photonic quantum networks. Quantum Sci Technol. 2018;3(1):013001. https://doi.org/10.1088/2058-9565/aa91bb.

Article
ADS
Google Scholar

Bäuerle C, Glattli DC, Meunier T, Portier F, Roche P, Roulleau P, Takada S, Waintal X. Coherent control of single electrons: a review of current progress. Rep Prog Phys. 2018;81(5):056503. https://doi.org/10.1088/1361-6633/aaa98a.

Article
ADS
MathSciNet
Google Scholar

Clauser JF. Experimental distinction between the quantum and classical field-theoretic predictions for the photoelectric effect. Phys Rev D. 1974;9:853–60. https://doi.org/10.1103/PhysRevD.9.853.

Article
ADS
Google Scholar

Eisaman MD, Fan J, Migdall A, Polyakov SV. Invited review article: single-photon sources and detectors. Rev Sci Instrum. 2011;82(7):071101. https://doi.org/10.1063/1.3610677.

Article
ADS
Google Scholar

Michler P, Kiraz A, Becher C, Schoenfeld WV, Petroff PM, Zhang L, Hu E, Imamoglu A. A quantum dot single-photon turnstile device. Science. 2000;290(5500):2282–5. https://doi.org/10.1126/science.290.5500.2282.

Article
ADS
Google Scholar

Senellart P, Solomon G, White A. High-performance semiconductor quantum-dot single-photon sources. Nat Nanotechnol. 2017;12(11):1026–39. https://doi.org/10.1038/nnano.2017.218.

Article
ADS
Google Scholar

Arcari M, Söllner I, Javadi A, Lindskov Hansen S, Mahmoodian S, Liu J, Thyrrestrup H, Lee EH, Song JD, Stobbe S, Lodahl P. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys Rev Lett. 2014;113:093603. https://doi.org/10.1103/PhysRevLett.113.093603.

Article
ADS
Google Scholar

Uppu R, Pedersen FT, Wang Y, Olesen CT, Papon C, Zhou X, Midolo L, Scholz S, Wieck AD, Ludwig A, Lodahl P. Scalable integrated single-photon source. Sci Adv. 2020;**6**(50). https://doi.org/10.1126/sciadv.abc8268.

Santori C, Fattal D, Vučković J, Solomon GS, Yamamoto Y. Indistinguishable photons from a single-photon device. Nature. 2002;419(6907):594–7. https://doi.org/10.1038/nature01086.

Article
ADS
Google Scholar

He Y-M, He Y, Wei Y-J, Wu D, Atatüre M, Schneider C, Höfling S, Kamp M, Lu C-Y, Pan J-W. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat Nanotechnol. 2013;8(3):213–7. https://doi.org/10.1038/nnano.2012.262.

Article
ADS
Google Scholar

Munsch M, Malik NS, Dupuy E, Delga A, Bleuse J, Gérard J-M, Claudon J, Gregersen N, Mørk J. Dielectric GaAs antenna ensuring an efficient broadband coupling between an InAs quantum dot and a Gaussian optical beam. Phys Rev Lett. 2013;110:177402. https://doi.org/10.1103/PhysRevLett.110.177402.

Article
ADS
Google Scholar

Somaschi N, Giesz V, De Santis L, Loredo J, Almeida MP, Hornecker G, Portalupi SL, Grange T, Anton C, Demory J, Gómez C, Sagnes I, Lanzillotti-Kimura ND, Lemaítre A, Auffeves A, White AG, Lanco L, Senellart P. Near-optimal single-photon sources in the solid state. Nat Photonics. 2016;10(5):340–5. https://doi.org/10.1038/nphoton.2016.23.

Article
ADS
Google Scholar

Tomm N, Javadi A, Antoniadis NO, Najer D, Löbl MC, Korsch AR, Schott R, Valentin SR, Wieck AD, Ludwig A, Warburton RJ. A bright and fast source of coherent single photons. Nat Nanotechnol. 2021;16(4):399–403. https://doi.org/10.1038/s41565-020-00831-x.

Article
ADS
Google Scholar

Lesovik GB. Excess quantum noise in 2D ballistic point contacts. JETP Lett. 1989;49:592–4.

ADS
Google Scholar

Büttiker M. Scattering theory of current and intensity noise correlations in conductors and wave guides. Phys Rev B. 1992;46:12485–507. https://doi.org/10.1103/PhysRevB.46.12485.

Article
ADS
Google Scholar

Landauer R, Martin T. Equilibrium and shot noise in mesoscopic systems. Physica B. 1991;175:167–77. https://doi.org/10.1016/0921-4526(91)90710-V.

Article
ADS
Google Scholar

Henny M, Oberholzer S, Strunk C, Heinzel T, Ensslin K, Holland M, Schönenberger C. The fermionic Hanbury Brown and Twiss experiment. Science. 1999;284(5412):296–8. https://doi.org/10.1126/science.284.5412.296.

Article
ADS
Google Scholar

Oliver WD, Kim J, Liu RC, Yamamoto Y. Hanbury Brown and Twiss-type experiment with electrons. Science. 1999;284(5412):299–301. https://doi.org/10.1126/science.284.5412.299.

Article
ADS
Google Scholar

Liu RC, Odom B, Yamamoto Y, Tarucha S. Quantum interference in electron collision. Nature. 1998;391:263.

Article
ADS
Google Scholar

Ji Y, Chung Y, Sprinzak D, Heiblum M, Mahalu D, Shtrikman H. An electronic Mach–Zehnder interferometer. Nature. 2003;422(6930):415–8. https://doi.org/10.1038/nature01503.

Article
ADS
Google Scholar

Fève G, Mahé A, Berroir J-M, Kontos T, Plaçais B, Glattli DC, Cavanna A, Etienne B, Jin Y. An on-demand coherent single-electron source. Science. 2007;316(5828):1169–72. https://doi.org/10.1126/science.1141243.

Article
ADS
Google Scholar

Blumenthal MD, Kaestner B, Li L, Giblin S, Janssen TJBM, Pepper M, Anderson D, Jones G, Ritchie DA. Gigahertz quantized charge pumping. Nat Phys. 2007;3:343.

Article
Google Scholar

Hermelin S, Takada S, Yamamoto M, Tarucha S, Wieck AD, Saminadayar L, Bäuerle C, Meunier T. Electrons surfing on a sound wave as a platform for quantum optics with flying electrons. Nature. 2011;477:435.

Article
ADS
Google Scholar

McNeil RPG, Kataoka M, Ford CJB, Barnes CHW, Anderson D, Jones GAC, Farrer I, Ritchie DA. On-demand single-electron transfer between distant quantum dots. Nature. 2011;477:439.

Article
ADS
Google Scholar

Dubois J, Jullien T, Portier F, Roche P, Cavanna A, Jin Y, Wegscheider W, Roulleau P, Glattli DC. Minimal-excitation states for electron quantum optics using levitons. Nature. 2013;502:659. https://doi.org/10.1038/nature12713.

Article
ADS
Google Scholar

Takada S, Edlbauer H, Lepage HV, Wang J, Mortemousque P-A, Georgiou G, Barnes CHW, Ford CJB, Yuan M, Santos PV, Waintal X, Ludwig A, Wieck AD, Urdampilleta M, Meunier T, Bäuerle C. Sound-driven single-electron transfer in a circuit of coupled quantum rails. Nat Commun. 2019;10:4557. https://doi.org/10.1038/s41467-019-12514-w.

Article
ADS
Google Scholar

Freise L, Gerster T, Reifert D, Weimann T, Pierz K, Hohls F, Ubbelohde N. Trapping and counting ballistic nonequilibrium electrons. Phys Rev Lett. 2020;124(12):127701. https://doi.org/10.1103/PhysRevLett.124.127701.

Article
ADS
Google Scholar

Giblin SP, Kataoka M, Fletcher JD, See P, Janssen TJBM, Griffiths JP, Jones GAC, Farrer I, Ritchie DA. Towards a quantum representation of the ampere using single electron pumps. Nat Commun. 2012;3:930.

Article
ADS
Google Scholar

Stein F, Scherer H, Gerster T, Behr R, Gotz M, Pesel E, Leicht C, Ubbelohde N, Weimann T, Pierz K, Schumacher HW, Hohls F. Robustness of single-electron pumps at sub-ppm current accuracy level. Metrologia. 2017;54(1):1. https://doi.org/10.1088/1681-7575/54/1/S1.

Article
ADS
Google Scholar

Moreau E, Robert I, Gérard JM, Abram I, Manin L, Thierry-Mieg V. Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities. Appl Phys Lett. 2001;79(18):2865–7. https://doi.org/10.1063/1.1415346.

Article
ADS
Google Scholar

Thomas S, Senellart P. The race for the ideal single-photon source is on. Nat Nanotechnol. 2021;16(4):367–8. https://doi.org/10.1038/s41565-021-00851-1.

Article
ADS
Google Scholar

Hayashi T, Fujisawa T, Cheong HD, Jeong YH, Hirayama Y. Coherent manipulation of electronic states in a double quantum dot. Phys Rev Lett. 2003;91:226804. https://doi.org/10.1103/PhysRevLett.91.226804.

Article
ADS
Google Scholar

Petta JR, Johnson AC, Marcus CM, Hanson MP, Gossard AC. Manipulation of a single charge in a double quantum dot. Phys Rev Lett. 2004;93:186802. https://doi.org/10.1103/PhysRevLett.93.186802.

Article
ADS
Google Scholar

Petersson KD, Petta JR, Lu H, Gossard AC. Quantum coherence in a one-electron semiconductor charge qubit. Phys Rev Lett. 2010;105:246804. https://doi.org/10.1103/PhysRevLett.105.246804.

Article
ADS
Google Scholar

Stockklauser A, Scarlino P, Koski JV, Gasparinetti S, Andersen CK, Reichl C, Wegscheider W, Ihn T, Ensslin K, Wallraff A. Strong coupling cavity QED with gate-defined double quantum dots enabled by a high impedance resonator. Phys Rev X. 2017;7:011030. https://doi.org/10.1103/PhysRevX.7.011030.

Article
Google Scholar

Roulleau P, Portier F, Roche P, Cavanna A, Faini G, Gennser U, Mailly D. Direct measurement of the coherence length of edge states in the integer quantum Hall regime. Phys Rev Lett. 2008;100:126802. https://doi.org/10.1103/PhysRevLett.100.126802.

Article
ADS
Google Scholar

Yamamoto M, Takada S, Bäuerle C, Watanabe K, Wieck AD, Tarucha S. Electrical control of a solid-state flying qubit. Nat Nanotechnol. 2012;7:247–51. https://doi.org/10.1038/nnano.2012.28.

Article
ADS
Google Scholar

Duprez H, Sivre E, Anthore A, Aassime A, Cavanna A, Ouerghi A, Gennser U, Pierre F. Macroscopic electron quantum coherence in a solid-state circuit. Phys Rev X. 2019;9:021030. https://doi.org/10.1103/PhysRevX.9.021030.

Article
Google Scholar

Duprez H, Sivre E, Anthore A, Aassime A, Cavanna A, Gennser U, Pierre F. Transmitting the quantum state of electrons across a metallic island with Coulomb interaction. Science. 2019;366(6470):1243–7. https://doi.org/10.1126/science.aaw7856.

Article
ADS
Google Scholar

Ladd TD, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O’Brien JL. Quantum computers. Nature. 2010;464:45–53. https://doi.org/10.1038/nature08812.

Article
ADS
Google Scholar

Popkin G. Scientists are close to building a quantum computer that can beat a conventional one. Science. 2016. https://doi.org/10.1126/science.aal0442.

Article
MathSciNet
Google Scholar

Kjaergaard M, Schwartz ME, Braumüller J, Krantz P, Wang JI-J, Gustavsson S, Oliver WD. Superconducting qubits: current state of play. Annu Rev Condens Matter Phys. 2020;11(1):369–95. https://doi.org/10.1146/annurev-conmatphys-031119-050605.

Article
Google Scholar

Bruzewicz CD, Chiaverini J, McConnell R, Sage JM. Trapped-ion quantum computing: progress and challenges. Appl Phys Rev. 2019;6(2):021314. https://doi.org/10.1063/1.5088164.

Article
Google Scholar

Stano P, Loss D. Review of performance metrics of spin qubits in gated semiconducting nanostructures. 2021. arXiv:2107.06485.

UltraFastNano. Electronic generation and detection in nanoelectronic devices at the picosecond scale. 2020. https://cordis.europa.eu/project/id/862683.

Niimi Y, Baines Y, Capron T, Mailly D, Lo F-Y, Wieck AD, Meunier T, Saminadayar L, Bäuerle C. Effect of disorder on the quantum coherence in mesoscopic wires. Phys Rev Lett. 2009;102:226801. https://doi.org/10.1103/PhysRevLett.102.226801.

Article
ADS
Google Scholar

Niimi Y, Baines Y, Capron T, Mailly D, Lo F-Y, Wieck AD, Meunier T, Saminadayar L, Bäuerle C. Quantum coherence at low temperatures in mesoscopic systems: effect of disorder. Phys Rev B. 2010;81:245306. https://doi.org/10.1103/PhysRevB.81.245306.

Article
ADS
Google Scholar

Roussely G, Arrighi E, Georgiou G, Takada S, Schalk M, Urdampilleta M, Ludwig A, Wieck AD, Armagnat P, Kloss T, Waintal X, Meunier T, Bäuerle C. Unveiling the bosonic nature of an ultrashort few-electron pulse. Nat Commun. 2018;9:2811. https://doi.org/10.1038/s41467-018-05203-7.

Article
ADS
Google Scholar

Bocquillon E, Freulon V, Berroir J-M, Degiovanni P, Plaçais B, Cavanna A, Jin Y, Fève G. Coherence and indistinguishability of single electrons emitted by independent sources. Science. 2013;339(6123):1054–7. https://doi.org/10.1126/science.1232572.

Article
ADS
Google Scholar

Thomas C, Hatke AT, Tuaz A, Kallaher R, Wu T, Wang T, Diaz RE, Gardner GC, Capano MA, Manfra MJ. High-mobility InAs 2DEGs on GaSb substrates: a platform for mesoscopic quantum transport. Phys Rev Materials. 2018;2:104602. https://doi.org/10.1103/PhysRevMaterials.2.104602.

Article
ADS
Google Scholar

Chung YJ, Villegas Rosales KA, Baldwin KW, Madathil PT, West KW, Shayegan M, Pfeiffer LN. Ultra-high-quality two-dimensional electron systems. Nat Mater. 2021;20(5):632–7. https://doi.org/10.1038/s41563-021-00942-3.

Article
ADS
Google Scholar

Talyanskii VI, Shilton JM, Pepper M, Smith CG, FordCJB, Linfield EH, Ritchie DA, Jones GAC. Single-electron transport in a one-dimensional channel by high-frequency surface acoustic waves. Phys Rev B. 1997;56:15180–4. https://doi.org/10.1103/PhysRevB.56.15180.

Article
ADS
Google Scholar

Kaestner B, Kashcheyevs V, Amakawa S, Blumenthal MD, Li L, Janssen TJBM, Hein G, Pierz K, Weimann T, Siegner U, Schumacher HW. Single-parameter nonadiabatic quantized charge pumping. Phys Rev B. 2008;77:153301. https://doi.org/10.1103/PhysRevB.77.153301.

Article
ADS
Google Scholar

Yamahata G, Giblin SP, Kataoka M, Karasawa T, Fujiwara A. High-accuracy current generation in the nanoampere regime from a silicon single-trap electron pump. Sci Rep. 2017;7(1):45137. https://doi.org/10.1038/srep45137.

Article
ADS
Google Scholar

Kaestner B, Kashcheyevs V. Non-adiabatic quantized charge pumping with tunable-barrier quantum dots: a review of current progress. Rep Prog Phys. 2015;78(10):103901. https://doi.org/10.1088/0034-4885/78/10/103901.

Article
ADS
Google Scholar

Jullien T, Roulleau P, Roche B, Cavanna A, Jin Y, Glattli DC. Quantum tomography of an electron. Nature. 2014;514:603.

Article
ADS
Google Scholar

Bisognin R, Marguerite A, Roussel B, Kumar M, Cabart C, Chapdelaine C, Mohammad-Djafari A, Berroir J-M, Bocquillon E, Plaçais B, Cavanna A, Gennser U, Jin Y, Degiovanni P, Fève G. Quantum tomography of electrical currents. Nat Commun. 2019;10:3379. https://doi.org/10.1038/s41467-019-11369-5.

Article
ADS
Google Scholar

Wixforth A, Kotthaus JP, Weimann G. Quantum oscillations in the surface-acoustic-wave attenuation caused by a two-dimensional electron system. Phys Rev Lett. 1986;56:2104–6. https://doi.org/10.1103/PhysRevLett.56.2104.

Article
ADS
Google Scholar

Morgan D. Surface acoustic wave filters: with applications to electronic communications and signal processing. 2nd ed. Oxford: Academic Press; 2007.

Google Scholar

de Lima MM, Santos PV. Modulation of photonic structures by surface acoustic waves. Rep Prog Phys. 2005;68(7):1639–701. https://doi.org/10.1088/0034-4885/68/7/r02.

Article
ADS
Google Scholar

Kataoka M, Astley MR, Thorn AL, Oi DKL, Barnes CHW, Ford CJB, Anderson D, Jones GAC, Farrer I, Ritchie DA, Pepper M. Coherent time evolution of a single-electron wave function. Phys Rev Lett. 2009;102:156801. https://doi.org/10.1103/PhysRevLett.102.156801.

Article
ADS
Google Scholar

Ito R, Takada S, Ludwig A, Wieck AD, Tarucha S, Yamamoto M. Coherent beam splitting of flying electrons driven by a surface acoustic wave. Phys Rev Lett. 2021;126:070501. https://doi.org/10.1103/PhysRevLett.126.070501.

Article
ADS
Google Scholar

Edlbauer H, Wang J, Ota S, Richard A, Jadot B, Mortemousque P-A, Okazaki Y, Nakamura S, Kodera T, Kaneko N-H, Ludwig A, Wieck AD, Urdampilleta M, Meunier T, Bäuerle C, Takada S. In-flight distribution of an electron within a surface acoustic wave. Appl Phys Lett. 2021;119(11):114004. https://doi.org/10.1063/5.0062491.

Article
ADS
Google Scholar

Jadot B, Mortemousque P-A, Chanrion E, Thiney V, Ludwig A, Wieck AD, Urdampilleta M, Bäuerle C, Meunier T. Distant spin entanglement via fast and coherent electron shuttling. Nat Nanotechnol. 2021;16(5):570–5. https://doi.org/10.1038/s41565-021-00846-y.

Article
ADS
Google Scholar

Taubert D, Schinner GJ, Tranitz HP, Wegscheider W, Tomaras C, Kehrein S, Ludwig S. Electron-avalanche amplifier based on the electronic venturi effect. Phys Rev B. 2010;82:161416. https://doi.org/10.1103/PhysRevB.82.161416.

Article
ADS
Google Scholar

Taubert D, Tomaras C, Schinner GJ, Tranitz HP, Wegscheider W, Kehrein S, Ludwig S. Relaxation of hot electrons in a degenerate two-dimensional electron system: transition to one-dimensional scattering. Phys Rev B. 2011;83:235404. https://doi.org/10.1103/PhysRevB.83.235404.

Article
ADS
Google Scholar

Fletcher JD, See P, Howe H, Pepper M, Giblin SP, Griffiths JP, Jones GAC, Farrer I, Ritchie DA, Janssen TJBM, Kataoka M. Clock-controlled emission of single-electron wave packets in a solid-state circuit. Phys Rev Lett. 2013;111(21):216807. https://doi.org/10.1103/PhysRevLett.111.216807.

Article
ADS
Google Scholar

Emary C, Dyson A, Ryu S, Sim H-S, Kataoka M. Phonon emission and arrival times of electrons from a single-electron source. Phys Rev B. 2016;93(3):035436. https://doi.org/10.1103/PhysRevB.93.035436.

Article
ADS
Google Scholar

Emary C, Clark LA, Kataoka M, Johnson N. Energy relaxation in hot electron quantum optics via acoustic and optical phonon emission. Phys Rev B. 2019;99(4):045306. https://doi.org/10.1103/PhysRevB.99.045306.

Article
ADS
Google Scholar

Johnson N, Emary C, Ryu S, Sim H-S, See P, Fletcher JD, Griffiths JP, Jones GAC, Farrer I, Ritchie DA, Pepper M, Janssen TJBM, Kataoka M. LO-phonon emission rate of hot electrons from an on-demand single-electron source in a GaAs/AlGaAs heterostructure. Phys Rev Lett. 2018;121(13):137703. https://doi.org/10.1103/PhysRevLett.121.137703.

Article
ADS
Google Scholar

Ota T, Akiyama S, Hashisaka M, Muraki K, Fujisawa T. Spectroscopic study on hot-electron transport in a quantum Hall edge channel. Phys Rev B. 2019;99:085310. https://doi.org/10.1103/PhysRevB.99.085310.

Article
ADS
Google Scholar

Heiblum M, Nathan MI, Thomas DC, Knoedler CM. Direct observation of ballistic transport in gaas. Phys Rev Lett. 1985;55:2200–3. https://doi.org/10.1103/PhysRevLett.55.2200.

Article
ADS
Google Scholar

Akiyama S, Hirasawa T, Sato Y, Akiho T, Muraki K, Fujisawa T. Ballistic hot-electron transport in a quantum Hall edge channel defined by a double gate. Appl Phys Lett. 2019;115(24):243106. https://doi.org/10.1063/1.5126776.

Article
ADS
Google Scholar

Kataoka M, Johnson N, Emary C, See P, Griffiths JP, Jones GAC, Farrer I, Ritchie DA, Pepper M, Janssen TJBM. Time-of-flight measurements of single-electron wave packets in quantum Hall edge states. Phys Rev Lett. 2016;116(12):126803. https://doi.org/10.1103/PhysRevLett.116.126803.

Article
ADS
Google Scholar

Waldie J, See P, Kashcheyevs V, Griffiths JP, Farrer I, Jones GAC, Ritchie DA, Janssen TJBM, Kataoka M. Measurement and control of electron wave packets from a single-electron source. Phys Rev B. 2015;92(12):125305. https://doi.org/10.1103/PhysRevB.92.125305.

Article
ADS
Google Scholar

Kataoka M, Fletcher JD, Johnson N. Time-resolved single-electron wave-packet detection. Phys Status Solidi B. 2017;254(3):1600547. https://doi.org/10.1002/pssb.201600547.

Article
ADS
Google Scholar

Fletcher JD, Johnson N, Locane E, See P, Griffiths JP, Farrer I, Ritchie DA, Brouwer PW, Kashcheyevs V, Kataoka M. Continuous-variable tomography of solitary electrons. Nat Commun. 2019;10(5298):1–7. https://doi.org/10.1038/s41467-019-13222-1.

Article
Google Scholar

Locane E, Brouwer PW, Kashcheyevs V. Time-energy filtering of single electrons in ballistic waveguides. New J Phys. 2019;21:093042. https://doi.org/10.1088/1367-2630/ab3fbb.

Article
MathSciNet
Google Scholar

Ryu S, Kataoka M, Sim H-S. Ultrafast emission and detection of a single-electron Gaussian wave packet: a theoretical study. Phys Rev Lett. 2016;117(14):146802. https://doi.org/10.1103/PhysRevLett.117.146802.

Article
ADS
Google Scholar

Ubbelohde N, Hohls F, Kashcheyevs V, Wagner T, Fricke L, Kästner B, Pierz K, Schumacher HW, Haug RJ. Partitioning of on-demand electron pairs. Nat Nanotechnol. 2015;10(1):46–9. https://doi.org/10.1038/nnano.2014.275.

Article
ADS
Google Scholar

Fricke L, Wulf M, Kaestner B, Kashcheyevs V, Timoshenko J, Nazarov P, Hohls F, Mirovsky P, Mackrodt B, Dolata R, Weimann T, Pierz K, Schumacher HW. Counting statistics for electron capture in a dynamic quantum dot. Phys Rev Lett. 2013;110:126803. https://doi.org/10.1103/PhysRevLett.110.126803.

Article
ADS
Google Scholar

Schulenborg J, Saptsov RB, Haupt F, Splettstoesser J, Wegewijs MR. Fermion-parity duality and energy relaxation in interacting open systems. Phys Rev B. 2016;93(8):081411. https://doi.org/10.1103/PhysRevB.93.081411.

Article
ADS
Google Scholar

Schulenborg J, Splettstoesser J, Wegewijs MR. Duality for open fermion systems: energy-dependent weak coupling and quantum master equations. Phys Rev B. 2018;98(23):235405. https://doi.org/10.1103/PhysRevB.98.235405.

Article
ADS
Google Scholar

Schulenborg J, Splettstoesser J, Governale M, Contreras-Pulido LD. Detection of the relaxation rates of an interacting quantum dot by a capacitively coupled sensor dot. Phys Rev B. 2014;89(19):195305. https://doi.org/10.1103/PhysRevB.89.195305.

Article
ADS
Google Scholar

Riwar R-P, Roche B, Jehl X, Splettstoesser J. Readout of relaxation rates by nonadiabatic pumping spectroscopy. Phys Rev B. 2016;93(23):235401. https://doi.org/10.1103/PhysRevB.93.235401.

Article
ADS
Google Scholar

Clark LA, Kataoka M, Emary C. Mitigating decoherence in hot electron interferometry. New J Phys. 2020;22(10):103031. https://doi.org/10.1088/1367-2630/abb9e5.

Article
Google Scholar

Barratt CJ, Ryu S, Clark LA, Sim H-S, Kataoka M, Emary C. Phase averaging and arrival times in a hot-electron Mach-Zehnder interferometer. 2021. arXiv:2104.01653.

Haack G, Moskalets M, Splettstoesser J, Büttiker M. Coherence of single-electron sources from Mach-Zehnder interferometry. Phys Rev B. 2011;84(8):081303. https://doi.org/10.1103/PhysRevB.84.081303.

Article
ADS
Google Scholar

Juergens S, Splettstoesser J, Moskalets M. Single-particle interference versus two-particle collisions. Europhys Lett. 2011;96(3):37011. https://doi.org/10.1209/0295-5075/96/37011.

Article
ADS
Google Scholar

Splettstoesser J, Moskalets M, Büttiker M. Two-particle nonlocal Aharonov-Bohm effect from two single-particle emitters. Phys Rev Lett. 2009;103(7):076804. https://doi.org/10.1103/PhysRevLett.103.076804.

Article
ADS
Google Scholar

Johnson N, Fletcher JD, Humphreys DA, See P, Griffiths JP, Jones GAC, Farrer I, Ritchie DA, Pepper M, Janssen TJBM, Kataoka M. Ultrafast voltage sampling using single-electron wavepackets. Appl Phys Lett. 2017;110(10):102105. https://doi.org/10.1063/1.4978388.

Article
ADS
Google Scholar

Levitov LS, Lee H, Lesovik GB. Electron counting statistics and coherent states of electric current. J Math Phys. 1996;37(10):4845–66. https://doi.org/10.1063/1.531672.

Article
ADS
MathSciNet
MATH
Google Scholar

Ivanov DA, Lee HW, Levitov LS. Coherent states of alternating current. Phys Rev B. 1997;56:6839–50. https://doi.org/10.1103/PhysRevB.56.6839.

Article
ADS
Google Scholar

Keeling J, Klich I, Levitov LS. Minimal excitation states of electrons in one-dimensional wires. Phys Rev Lett. 2006;97:116403. https://doi.org/10.1103/PhysRevLett.97.116403.

Article
ADS
Google Scholar

Grenier C, Dubois J, Jullien T, Roulleau P, Glattli DC, Degiovanni P. Fractionalization of minimal excitations in integer quantum Hall edge channels. Phys Rev B. 2013;88:085302. https://doi.org/10.1103/PhysRevB.88.085302.

Article
ADS
Google Scholar

Moskalets M. First-order correlation function of a stream of single-electron wave packets. Phys Rev B. 2015;91:195431. https://doi.org/10.1103/PhysRevB.91.195431.

Article
ADS
Google Scholar

Glattli DC, Roulleau P. Hanbury-Brown Twiss noise correlation with time controlled quasi-particles in ballistic quantum conductors. Physica E, Low-Dimens Syst Nanostruct. 2016;76:216–22. https://doi.org/10.1016/j.physe.2015.10.034.

Article
ADS
Google Scholar

Ferraro D, Ronetti F, Vannucci L, Acciai M, Rech J, Jockheere T, Martin T, Sassetti M. Hong-Ou-Mandel characterization of multiply charged Levitons. Eur Phys J Spec Top. 2018;227(12):1345–59. https://doi.org/10.1140/epjst/e2018-800074-1.

Article
Google Scholar

Vanević M, Gabelli J, Belzig W, Reulet B. Electron and electron-hole quasiparticle states in a driven quantum contact. Phys Rev B. 2016;93:041416. https://doi.org/10.1103/PhysRevB.93.041416.

Article
ADS
Google Scholar

Yin Y. Quasiparticle states of on-demand coherent electron sources. J Phys Condens Matter. 2019;31(24):245301. https://doi.org/10.1088/1361-648x/ab0fc4.

Article
ADS
Google Scholar

Kotilahti J, Burset P, Moskalets M, Flindt C. Multi-particle interference in an electronic Mach—Zehnder interferometer. Entropy. 2021;23(6):736. https://doi.org/10.3390/e23060736.

Article
ADS
MathSciNet
Google Scholar

Grenier C, Hervé R, Bocquillon E, Parmentier FD, Plaçais B, Berroir JM, Fève G, Degiovanni P. Single-electron quantum tomography in quantum Hall edge channels. New J Phys. 2011;13(9):093007. https://doi.org/10.1088/1367-2630/13/9/093007.

Article
Google Scholar

Roussel B, Cabart C, Fève G, Degiovanni P. Processing quantum signals carried by electrical currents. PRX Quantum. 2021;2:020314. https://doi.org/10.1103/PRXQuantum.2.020314.

Article
ADS
Google Scholar

Ferraro D, Feller A, Ghibaudo A, Thibierge E, Bocquillon E, Fève G, Grenier C, Degiovanni P. Wigner function approach to single electron coherence in quantum Hall edge channels. Phys Rev B. 2013;88:205303. https://doi.org/10.1103/PhysRevB.88.205303.

Article
ADS
Google Scholar

Ferraro D, Roussel B, Cabart C, Thibierge E, Fève G, Grenier C, Degiovanni P. Real-time decoherence of Landau and Levitov quasiparticles in quantum Hall edge channels. Phys Rev Lett. 2014;113:166403. https://doi.org/10.1103/PhysRevLett.113.166403.

Article
ADS
Google Scholar

Cabart C, Roussel B, Fève G, Degiovanni P. Taming electronic decoherence in one-dimensional chiral ballistic quantum conductors. Phys Rev B. 2018;98:155302. https://doi.org/10.1103/PhysRevB.98.155302.

Article
ADS
Google Scholar

Rebora G, Acciai M, Ferraro D, Sassetti M. Collisional interferometry of levitons in quantum Hall edge channels at \(\nu =2\). Phys Rev B. 2020;101:245310. https://doi.org/10.1103/PhysRevB.101.245310.

Article
ADS
Google Scholar

Wahl C, Rech J, Jonckheere T, Martin T. Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer. Phys Rev Lett. 2014;112:046802. https://doi.org/10.1103/PhysRevLett.112.046802.

Article
ADS
Google Scholar

Freulon V, Marguerite A, Berroir J-M, Plaçais B, Cavanna A, Jin Y, Fève G. Hong-Ou-Mandel experiment for temporal investigation of single-electron fractionalization. Nat Commun. 2015;6:6854.

Article
ADS
Google Scholar

Marguerite A, Cabart C, Wahl C, Roussel B, Freulon V, Ferraro D, Grenier C, Berroir J-M, Plaçais B, Jonckheere T, Rech J, Martin T, Degiovanni P, Cavanna A, Jin Y, Fève G. Decoherence and relaxation of a single electron in a one-dimensional conductor. Phys Rev B. 2016;94:115311. https://doi.org/10.1103/PhysRevB.94.115311.

Article
ADS
Google Scholar

Auston DH. Picosecond optoelectronic switching and gating in silicon. Appl Phys Lett. 1975;26(3):101–3. https://doi.org/10.1063/1.88079.

Article
ADS
Google Scholar

Mourou G, Stancampiano CV, Blumenthal D. Picosecond microwave pulse generation. Appl Phys Lett. 1981;38(6):470–2. https://doi.org/10.1063/1.92407.

Article
ADS
Google Scholar

Auston DH, Cheung KP, Smith PR. Picosecond photoconducting hertzian dipoles. Appl Phys Lett. 1984;45(3):284–6. https://doi.org/10.1063/1.95174.

Article
ADS
Google Scholar

Heshmat B, Pahlevaninezhad H, Pang Y, Masnadi-Shirazi M, Burton Lewis R, Tiedje T, Gordon R, Darcie TE. Nanoplasmonic terahertz photoconductive switch on gaas. Nano Lett. 2012;12(12):6255–9. https://doi.org/10.1021/nl303314a.

Article
ADS
Google Scholar

Georgiou G, Geffroy C, Bäuerle C, Roux J-F. Efficient three-dimensional photonic—plasmonic photoconductive switches for picosecond THz pulses. ACS Photonics. 2020;7(6):1444–51. https://doi.org/10.1021/acsphotonics.0c00044.

Article
Google Scholar

Roulleau P, Portier F, Glattli DC, Roche P, Cavanna A, Faini G, Gennser U, Mailly D. Finite bias visibility of the electronic Mach-Zehnder interferometer. Phys Rev B. 2007;76(16):161309. https://doi.org/10.1103/physrevb.76.161309.

Article
ADS
Google Scholar

Neder I, Ofek N, Chung Y, Heiblum M, Mahalu D, Umansky V. Interference between two indistinguishable electrons from independent sources. Nature. 2007;448:333.

Article
ADS
Google Scholar

Forrester DM, Kusmartsev FV. Graphene levitons and anti-levitons in magnetic fields. Nanoscale. 2014;6:7594–603. https://doi.org/10.1039/C4NR00754A.

Article
ADS
Google Scholar

Forrester DM. Confinement effects of levitons in a graphene cosmology laboratory. RSC Adv. 2015;5:5442–9. https://doi.org/10.1039/C4RA11227J.

Article
ADS
Google Scholar

Thalineau R, Wieck AD, Bäuerle C, Meunier T. Using a two-electron spin qubit to detect electrons flying above the Fermi sea. 2014. arXiv:1403.7770.

Meunier T. private communication.

Glattli DC, Nath J, Taktak I, Roulleau P, Bäuerle C, Waintal X. Design of a single-shot electron detector with sub-electron sensitivity for electron flying qubit operation. 2020. https://arxiv.org/abs/2002.03947.

Ionicioiu R, Amaratunga G, Udrea F. Quantum computation with ballistic electrons. Int J Mod Phys B. 2001;15(2):125–33.

Article
ADS
Google Scholar

Bertoni A, Bordone P, Brunetti R, Jacoboni C, Reggiani S. Quantum logic gates based on coherent electron transport in quantum wires. Phys Rev Lett. 2000;84:5912–5. https://doi.org/10.1103/PhysRevLett.84.5912.

Article
ADS
MATH
Google Scholar

Ionicioiu R, Zanardi P, Rossi F. Testing Bell’s inequality with ballistic electrons in semiconductors. Phys Rev A. 2001;63:050101. https://doi.org/10.1103/PhysRevA.63.050101.

Article
ADS
Google Scholar

Slussarenko S, Pryde GJ. Photonic quantum information processing: a concise review. Appl Phys Rev. 2019;6(4):041303. https://doi.org/10.1063/1.5115814.

Article
Google Scholar

Reiher M, Wiebe N, Svore KM, Wecker D, Troyer M. Elucidating reaction mechanisms on quantum computers. Proc Natl Acad Sci USA. 2017;114(29):7555–60. https://doi.org/10.1073/pnas.1619152114.

Article
ADS
Google Scholar

Zhou Y, Stoudenmire EM, Waintal X. What limits the simulation of quantum computers? Phys Rev X. 2020;10:041038. https://doi.org/10.1103/PhysRevX.10.041038.

Article
Google Scholar

Takeda S, Furusawa A. Universal quantum computing with measurement-induced continuous-variable gate sequence in a loop-based architecture. Phys Rev Lett. 2017;119:120504. https://doi.org/10.1103/PhysRevLett.119.120504.

Article
ADS
Google Scholar

Waintal X. What determines the ultimate precision of a quantum computer. Phys Rev A. 2019;99:042318. https://doi.org/10.1103/PhysRevA.99.042318.

Article
ADS
Google Scholar

Glattli DC, Andrei EY, Deville G, Poitrenaud J, Williams FIB. Dynamical Hall effect in a two-dimensional classical plasma. Phys Rev Lett. 1985;54:1710–3. https://doi.org/10.1103/PhysRevLett.54.1710.

Article
ADS
Google Scholar

Mast DB, Dahm AJ, Fetter AL. Observation of bulk and edge magnetoplasmons in a two-dimensional electron fluid. Phys Rev Lett. 1985;54:1706–9. https://doi.org/10.1103/PhysRevLett.54.1706.

Article
ADS
Google Scholar

Dahm AJ, Vinen WF. Electrons and ions at the helium surface. Phys Today. 1987;40(2):43–50. https://doi.org/10.1063/1.881098.

Article
Google Scholar

Byeon H, Nasyedkin K, Lane JR, Beysengulov NR, Zhang L, Loloee R, Pollanen J. Piezoacoustics for precision control of electrons floating on helium. Nat Commun. 2021;12(1):4150. https://doi.org/10.1038/s41467-021-24452-7.

Article
ADS
Google Scholar

Zhou X, Koolstra G, Zhang X, Yang G, Han X, Dizdar B, Li X, Divan R, Guo W, Murch KW, Schuster DI, Jin D. Single electrons on solid neon as a solid-state qubit platform. Nature. 2022;605(7908):46–50. https://doi.org/10.1038/s41586-022-04539-x.

Article
ADS
Google Scholar

Chatterjee A, Stevenson P, De Franceschi S, Morello A, de Leon NP, Kuemmeth F. Semiconductor qubits in practice. Nat Rev Phys. 2021;3(3):157–77. https://doi.org/10.1038/s42254-021-00283-9.

Article
Google Scholar

Trellakis A, Zibold T, Andlauer T, Birner S, Smith RK, Morschl R, Vogl P. The 3D nanometer device project nextnano: concepts, methods, results. J Comput Electron. 2006;5(4):285–9. https://doi.org/10.1007/s10825-006-0005-x.

Article
Google Scholar

Groth CW, Wimmer M, Akhmerov AR, Waintal X. Kwant: a software package for quantum transport. New J Phys. 2014;16(6):063065. https://doi.org/10.1088/1367-2630/16/6/063065.

Article
Google Scholar

Kloss T, Weston J, Gaury B, Rossignol B, Groth C, Waintal X. Tkwant: a software package for time-dependent quantum transport. New J Phys. 2021;23(2):023025. https://doi.org/10.1088/1367-2630/abddf7.

Article
MathSciNet
Google Scholar

Bautze T, Süssmeier C, Takada S, Groth C, Meunier T, Yamamoto M, Tarucha S, Waintal X, Bäuerle C. Theoretical, numerical, and experimental study of a flying qubit electronic interferometer. Phys Rev B. 2014;89:125432. https://doi.org/10.1103/PhysRevB.89.125432.

Article
ADS
Google Scholar

Weston J, Waintal X. Towards realistic time-resolved simulations of quantum devices. J Comput Electron. 2016,15(4):1148–57. https://doi.org/10.1007/s10825-016-0855-9.

Article
Google Scholar

Rossignol B, Kloss T, Armagnat P, Waintal X. Toward flying qubit spectroscopy. Phys Rev B. 2018;98:205302. https://doi.org/10.1103/PhysRevB.98.205302.

Article
ADS
Google Scholar

Datta S. Quantum transport: atom to transistor. Cambridge: Cambridge University Press; 2005. https://doi.org/10.1017/CBO9781139164313.

Book
MATH
Google Scholar

Birner S, Schindler C, Greck P, Sabathil M, Vogl P. Ballistic quantum transport using the contact block reduction (CBR) method. J Comput Electron. 2009;8:267–86. https://doi.org/10.1007/s10825-009-0293-z.

Article
Google Scholar

Trellakis A, Galick AT, Pacelli A, Ravaioli U. Iteration scheme for the solution of the two-dimensional Schrödinger-Poisson equations in quantum structures. J Appl Phys. 1997;81(12):7880–4. https://doi.org/10.1063/1.365396.

Article
ADS
Google Scholar

Armagnat P, Lacerda-Santos A, Rossignol B, Groth C, Waintal X. The self-consistent quantum-electrostatic problem in strongly non-linear regime. SciPost Phys. 2019;7:31. https://doi.org/10.21468/SciPostPhys.7.3.031.

Article
ADS
MathSciNet
Google Scholar

Grange T, Stark D, Scalari G, Faist J, Persichetti L, Di Gaspare L, De Seta M, Ortolani M, Paul DJ, Capellini G, Birner S, Virgilio M. Room temperature operation of n-type Ge/SiGe terahertz quantum cascade lasers predicted by non-equilibrium Green’s functions. Appl Phys Lett. 2019;114(11):111102. https://doi.org/10.1063/1.5082172.

Article
ADS
Google Scholar

Mamaluy D, Sabathil M, Vogl P. Efficient method for the calculation of ballistic quantum transport. J Appl Phys. 2003;93:4628. https://doi.org/10.1063/1.1560567.

Article
ADS
Google Scholar

Birner S, Hackenbuchner S, Sabathil M, Zandler G, Majewski J, Andlauer T, Zibold T, Morschl R, Trellakis A, Vogl P. Modeling of semiconductor nanostructures with nextnano^{3}. Acta Phys Pol A. 2006;110:111–24. https://doi.org/10.12693/APhysPolA.110.111.

Article
ADS
Google Scholar

Birner S, Zibold T, Andlauer T, Kubis T, Sabathil M, Trellakis A, Vogl P. nextnano: general purpose 3-D simulations. IEEE Trans Electron Devices. 2007;54:2137–42. https://doi.org/10.1109/TED.2007.902871.

Article
ADS
Google Scholar

Zibold T, Vogl P, Bertoni A. Theory of semiconductor quantum-wire-based single- and two-qubit gates. Phys Rev B. 2007;76:195301. https://doi.org/10.1103/PhysRevB.76.195301.

Article
ADS
Google Scholar

Caflisch RE, Gyure MF, Robinson HD, Yablonovitch E. Modeling, design, and optimization of a solid state electron spin qubit. SIAM J Appl Math. 2005;65(4):1285–304.

Article
MathSciNet
Google Scholar

Wild A, Sailer J, Nützel J, Abstreiter G, Ludwig S, Bougeard D. Electrostatically defined quantum dots in a Si/SiGe heterostructure. New J Phys. 2010;12(11):113019. https://doi.org/10.1088/1367-2630/12/11/113019.

Article
Google Scholar

Ramirez EB, Sfigakis F, Kudva S, Baugh J. Few-electrode design for silicon MOS quantum dots. Semicond Sci Technol. 2019;35(1):015002. https://doi.org/10.1088/1361-6641/ab516a.

Article
ADS
Google Scholar

Buonacorsi B, Shaw B, Baugh J. Simulated coherent electron shuttling in silicon quantum dots. Phys Rev B. 2020;102:125406. https://doi.org/10.1103/PhysRevB.102.125406.

Article
ADS
Google Scholar

Jirovec D, Hofmann A, Ballabio A, Mutter PM, Tavani G, Botifoll M, Crippa A, Kukucka J, Sagi O, Martins F et al.. A singlet-triplet hole spin qubit in planar ge. Nat Mater. 2021;20:1106–12.

Article
ADS
Google Scholar

Chatzikyriakou E, Wang J, Mazzella L, Lacerda-Santos A, Figueira MCdS, Trellakis A, Birner S, Grange T, Bäuerle C, Waintal X. Unveiling the charge distribution of a GaAs-based nanoelectronic device: a large experimental data-set approach. 2022. https://arxiv.org/abs/2205.00846.

Hou H, Chung Y, Rughoobur G, Hsiao TK, Nasir A, Flewitt AJ, Griffiths JP, Farrer I, Ritchie DA, Ford CJB. Experimental verification of electrostatic boundary conditions in gate-patterned quantum devices. J Phys D, Appl Phys. 2018;51(24):244004.

Article
ADS
Google Scholar

Wang J. nextnanopy. 2021. https://github.com/nextnanopy Accessed 2021-08-03.

Datta S, Melloch MR, Bandyopadhyay S, Lundstrom MS. Proposed structure for large quantum interference effects. Appl Phys Lett. 1986;48(7):487–9. https://doi.org/10.1063/1.96484.

Article
ADS
Google Scholar

Gaury B, Weston J, Santin M, Houzet M, Groth C, Waintal X. Numerical simulations of time-resolved quantum electronics. Phys Rep. 2014;534(1):1–37. https://doi.org/10.1016/j.physrep.2013.09.001.

Article
ADS
MathSciNet
Google Scholar

Gaury B, Weston J, Waintal X. Stopping electrons with radio-frequency pulses in the quantum Hall regime. Phys Rev B. 2014;90:161305. https://doi.org/10.1103/PhysRevB.90.161305.

Article
ADS
Google Scholar

Maček M, Dumitrescu PT, Bertrand C, Triggs B, Parcollet O, Waintal X. Quantum quasi-Monte Carlo technique for many-body perturbative expansions. Phys Rev Lett. 2020;125:047702. https://doi.org/10.1103/PhysRevLett.125.047702.

Article
ADS
Google Scholar

Lepeshov S, Gorodetsky A, Krasnok A, Rafailov E, Belov P. Enhancement of terahertz photoconductive antenna operation by optical nanoantennas. Laser Photonics Rev. 2017;11(1):1600199. https://doi.org/10.1002/lpor.201600199.

Article
ADS
Google Scholar

Bashirpour M, Ghorbani S, Kolahdouz M, Neshat M, Masnadi-Shirazi M, Aghababa H. Significant performance improvement of a terahertz photoconductive antenna using a hybrid structure. RSC Adv. 2017;7:53010–7. https://doi.org/10.1039/C7RA11398F.

Article
ADS
Google Scholar