Zyla PA et al.. Review of particle physics. Prog Theor Exp Phys. 2020;2020(8):083C01. https://doi.org/10.1093/ptep/ptaa104.

Article
Google Scholar

Khoury J, Weltman A. Chameleon cosmology. Phys Rev D. 2004;69:044026. https://doi.org/10.1103/PhysRevD.69.044026.

Article
ADS
MathSciNet
Google Scholar

Avelino PP, Martins CJAP, Nunes NJ, Olive KA. Reconstructing the dark energy equation of state with varying couplings. Phys Rev D. 2006;74:083508. https://doi.org/10.1103/PhysRevD.74.083508.

Article
ADS
Google Scholar

Dvali G, Zaldarriaga M. Changing *α* with time: implications for fifth-force-type experiments and quintessence. Phys Rev Lett. 2002;88:091303. https://doi.org/10.1103/PhysRevLett.88.091303.

Article
ADS
Google Scholar

Banks T, Dine M, Douglas M. Time-varying *α* and particle physics. Phys Rev Lett. 2002;88:131301. https://doi.org/10.1103/PhysRevLett.88.131301.

Article
ADS
MathSciNet
Google Scholar

Taylor TR, Veneziano G. Dilaton couplings at large distances. Phys Lett B. 1988;213(4):450–4. https://doi.org/10.1016/0370-2693(88)91290-7.

Article
ADS
Google Scholar

Gambini R, Pullin J. Discrete quantum gravity: a mechanism for selecting the value of fundamental constants. Int J Mod Phys D. 2003;12(09):1775–81. https://doi.org/10.1142/S0218271803004018.

Article
ADS
MathSciNet
Google Scholar

Taveras V, Yunes N. Barbero–Immirzi parameter as a scalar field: *K*-inflation from loop quantum gravity? Phys Rev D. 2008;78:064070. https://doi.org/10.1103/PhysRevD.78.064070.

Article
ADS
MathSciNet
Google Scholar

Uzan J-P. The stability of fundamental constants. C R Phys. 2015;16(5):576–85. https://doi.org/10.1016/j.crhy.2015.03.007. The measurement of time / La mesure du temps.

Article
Google Scholar

Arvanitaki A, Huang J, Van Tilburg K. Searching for dilaton dark matter with atomic clocks. Phys Rev D. 2015;91:015015. https://doi.org/10.1103/PhysRevD.91.015015.

Article
ADS
Google Scholar

Stadnik YV, Flambaum VV. Searching for dark matter and variation of fundamental constants with laser and maser interferometry. Phys Rev Lett. 2015;114:161301. https://doi.org/10.1103/PhysRevLett.114.161301.

Article
ADS
Google Scholar

Stadnik YV, Flambaum VV. Can dark matter induce cosmological evolution of the fundamental constants of nature? Phys Rev Lett. 2015;115:201301. https://doi.org/10.1103/PhysRevLett.115.201301.

Article
ADS
Google Scholar

Arvanitaki A, Dimopoulos S, Van Tilburg K. Sound of dark matter: searching for light scalars with resonant-mass detectors. Phys Rev Lett. 2016;116:031102. https://doi.org/10.1103/PhysRevLett.116.031102.

Article
ADS
Google Scholar

Hees A, Minazzoli O, Savalle E, Stadnik YV, Wolf P. Violation of the equivalence principle from light scalar dark matter. Phys Rev D. 2018;98:064051. https://doi.org/10.1103/PhysRevD.98.064051.

Article
ADS
MathSciNet
Google Scholar

Safronova MS, Budker D, DeMille D, Kimball DFJ, Derevianko A, Clark CW. Search for new physics with atoms and molecules. Rev Mod Phys. 2018;90:025008. https://doi.org/10.1103/RevModPhys.90.025008.

Article
ADS
MathSciNet
Google Scholar

Brewer SM, Chen J-S, Hankin AM, Clements ER, Chou CW, Wineland DJ, Hume DB, Leibrandt DR. \({}^{27}{\mathrm{Al}}^{+}\) quantum-logic clock with a systematic uncertainty below 10^{−18}. Phys Rev Lett. 2019;123:033201. https://doi.org/10.1103/PhysRevLett.123.033201.

Article
ADS
Google Scholar

Oelker E, Hutson RB, Kennedy CJ, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson JM, Marti GE, Matei DG, Legero T, Giunta M, Holzwarth R, Riehle F, Sterr U, Ye J. Demonstration of \(4.8 \times 10^{-17}\) stability at 1 s for two independent optical clocks. Nat Photonics. 2019;13(10):714–9. https://doi.org/10.1038/s41566-019-0493-4.

Article
ADS
Google Scholar

Godun RM, Nisbet-Jones PBR, Jones JM, King SA, Johnson LAM, Margolis HS, Szymaniec K, Lea SN, Bongs K, Gill P. Frequency ratio of two optical clock transitions in ^{171}Yb^{+} and constraints on the time variation of fundamental constants. Phys Rev Lett. 2014;113:210801. https://doi.org/10.1103/PhysRevLett.113.210801.

Article
ADS
Google Scholar

Huntemann N, Lipphardt B, Tamm C, Gerginov V, Weyers S, Peik E. Improved limit on a temporal variation of \({m}_{p}/{m}_{e}\) from comparisons of Yb^{+} and Cs atomic clocks. Phys Rev Lett. 2014;113:210802. https://doi.org/10.1103/PhysRevLett.113.210802.

Article
ADS
Google Scholar

Lange R, Huntemann N, Rahm JM, Sanner C, Shao H, Lipphardt B, Tamm C, Weyers S, Peik E. Improved limits for violations of local position invariance from atomic clock comparisons. Phys Rev Lett. 2021;126:011102. https://doi.org/10.1103/PhysRevLett.126.011102.

Article
ADS
Google Scholar

BACON collaboration. Frequency ratio measurements at 18-digit accuracy using an optical clock network. Nature. 2021;591(7851):564–9.

Article
ADS
Google Scholar

Derevianko A, Pospelov M. Hunting for topological dark matter with atomic clocks. Nat Phys. 2014;10(12):933–6.

Article
Google Scholar

Derevianko A. Detecting dark-matter waves with a network of precision-measurement tools. Phys Rev A. 2018;97:042506. https://doi.org/10.1103/PhysRevA.97.042506.

Article
ADS
Google Scholar

Roberts BM, Blewitt G, Dailey C et al.. Search for domain wall dark matter with atomic clocks on board global positioning system satellites. Nat Commun. 2017;8:1195. https://doi.org/10.1038/s41467-017-01440-4.

Article
ADS
Google Scholar

Wcisło P, Ablewski P, Beloy K, Bilicki S, Bober M, Brown R, Fasano R, Ciuryło R, Hachisu H, Ido T, Lodewyck J, Ludlow A, McGrew W, Morzyński P, Nicolodi D, Schioppo M, Sekido M, Le Targat R, Wolf P, Zhang X, Zjawin B, Zawada M. New bounds on dark matter coupling from a global network of optical atomic clocks. Sci Adv. 2018;4(12):eaau4869. https://doi.org/10.1126/sciadv.aau4869.

Article
ADS
Google Scholar

Roberts BM, Delva P, Al-Masoudi A, Amy-Klein A, Bærentsen C, Baynham CFA, Benkler E, Bilicki S, Bize S, Bowden W, Calvert J, Cambier V, Cantin E, Curtis EA, Dörscher S, Favier M, Frank F, Gill P, Godun RM, Grosche G, Guo C, Hees A, Hill IR, Hobson R, Huntemann N, Kronjäger J, Koke S, Kuhl A, Lange R, Legero T, Lipphardt B, Lisdat C, Lodewyck J, Lopez O, Margolis HS, Álvarez-Martínez H, Meynadier F, Ozimek F, Peik E, Pottie P-E, Quintin N, Sanner C, Sarlo LD, Schioppo M, Schwarz R, Silva A, Sterr U, Tamm C, Targat RL, Tuckey P, Vallet G, Waterholter T, Xu D, Wolf P. Search for transient variations of the fine structure constant and dark matter using fiber-linked optical atomic clocks. New J Phys. 2020;22(9):093010. https://doi.org/10.1088/1367-2630/abaace.

Article
Google Scholar

Stadnik YV. New bounds on macroscopic scalar-field topological defects from nontransient signatures due to environmental dependence and spatial variations of the fundamental constants. Phys Rev D. 2020;102:115016. https://doi.org/10.1103/PhysRevD.102.115016.

Article
ADS
Google Scholar

Barontini G, Boyer V, Calmet X, Fitch NJ, Forgan EM, Godun RM, Goldwin J, Guarrera V, Hill IR, Jeong M, Keller M, Kuipers F, Margolis HS, Newman P, Prokhorov L, Rodewald J, Sauer BE, Schioppo M, Sherrill N, Tarbutt MR, Vecchio A, Worm S. QSNET, a network of clock for measuring the stability of fundamental constants. In: SPIE quantum technology: driving commercialisation of an enabling science II. vol. 11881. 2021. p. 63–6. https://doi.org/10.1117/12.2600493.

Chapter
Google Scholar

Flambaum VV, Dzuba VA. Search for variation of the fundamental constants in atomic, molecular, and nuclear spectra. Can J Phys. 2009;87(1):25–33. https://doi.org/10.1139/p08-072.0805.0462v2.

Article
ADS
Google Scholar

Porsev SG, Safronova UI, Safronova MS, Schmidt PO, Bondarev AI, Kozlov MG, Tupitsyn II, Cheung C. Optical clocks based on the Cf^{15+} and Cf^{17+} ions. Phys Rev A. 2020;102:012802. https://doi.org/10.1103/PhysRevA.102.012802.

Article
ADS
Google Scholar

Dirac PAM. The cosmological constants. Nature. 1937;139:323. https://doi.org/10.1038/139323a0.

Article
ADS
MATH
Google Scholar

Dirac PAM. New basis for cosmology. Proc R Soc Lond A. 1938;165:199–208. https://doi.org/10.1098/rspa.1938.0053.

Article
ADS
MATH
Google Scholar

Milne EA. Kinematics, dynamics, and the scale of time. Proc R Soc A. 1937;158:324–48. https://www.jstor.org/stable/96821.

ADS
MATH
Google Scholar

Jordan P. *G* has to be a field. Naturwissenschaften. 1937;25:513–7. https://doi.org/10.1007/BF01498368.

Article
ADS
Google Scholar

Jordan P. Über die kosmologische Konstanz der Feinstrukturkonstanten. Z Phys. 1939;113:660–2. https://doi.org/10.1007/BF01340095.

Article
ADS
MATH
Google Scholar

Uzan J-P. Varying constants, gravitation and cosmology. Living Rev Relativ. 2011;14:2. https://doi.org/10.12942/lrr-2011-2. arXiv:1009.5514.

Article
ADS
MATH
Google Scholar

Webb JK, Murphy MT, Flambaum VV, Dzuba VA, Barrow JD, Churchill CW, Prochaska JX, Wolfe AM. Further evidence for cosmological evolution of the fine structure constant. Phys Rev Lett. 2001;87:091301. https://doi.org/10.1103/PhysRevLett.87.091301. arXiv:astro-ph/0012539.

Article
ADS
Google Scholar

Chand H, Srianand R, Petitjean P, Aracil B. Probing the cosmological variation of the fine—structure constant: results based on VLT—UVES sample. Astron Astrophys. 2004;417:853. https://doi.org/10.1051/0004-6361:20035701. arXiv:astro-ph/0401094.

Article
ADS
Google Scholar

’t Hooft G. A class of elementary particle models without any adjustable real parameters. Found Phys. 2011;41:1829–56. https://doi.org/10.1007/s10701-011-9586-8. arXiv:1104.4543.

Article
ADS
MathSciNet
MATH
Google Scholar

Connes A. Noncommutative geometry. 1994.

MATH
Google Scholar

Polchinski J. String theory. Vol. 1: an introduction to the bosonic string. Cambridge monographs on mathematical physics. Cambridge: Cambridge University Press; 2007. https://doi.org/10.1017/CBO9780511816079.

Book
MATH
Google Scholar

Polchinski J. String theory. Vol. 2: superstring theory and beyond. Cambridge monographs on mathematical physics. Cambridge: Cambridge University Press; 2007. https://doi.org/10.1017/CBO9780511618123.

Book
MATH
Google Scholar

Marciano WJ. Time variation of the fundamental ‘constants’ and Kaluza–Klein theories. Phys Rev Lett. 1984;52:489. https://doi.org/10.1103/PhysRevLett.52.489.

Article
ADS
Google Scholar

Calmet X. Hidden sector and gravity. Phys Lett B. 2020;801:135152. https://doi.org/10.1016/j.physletb.2019.135152. arXiv:1912.04147.

Article
MathSciNet
MATH
Google Scholar

Calmet X. On searches for gravitational dark matter with quantum sensors. Eur Phys J Plus. 2019;134(10):503. https://doi.org/10.1140/epjp/i2019-12885-5. arXiv:1907.05680.

Article
Google Scholar

Calmet X, Kuipers F. Bounds on very weakly interacting ultra light scalar and pseudoscalar dark matter from quantum gravity. Eur Phys J C. 2020;80(8):781. https://doi.org/10.1140/epjc/s10052-020-8350-7. arXiv:2008.06243.

Article
ADS
Google Scholar

Calmet X, Kuipers F. Theoretical bounds on dark matter masses. Phys Lett B. 2021;814:136068. https://doi.org/10.1016/j.physletb.2021.136068. arXiv:2009.11575.

Article
MathSciNet
Google Scholar

Calmet X, Kuipers F. Implications of Quantum Gravity for Dark Matter. Int J Mod Phys D. 2021;30(14):2142004.

Article
ADS
Google Scholar

Kapner DJ, Cook TS, Adelberger EG, Gundlach JH, Heckel BR, Hoyle CD, Swanson HE. Tests of the gravitational inverse-square law below the dark-energy length scale. Phys Rev Lett. 2007;98:021101. https://doi.org/10.1103/PhysRevLett.98.021101. arXiv:hep-ph/0611184.

Article
ADS
Google Scholar

Hoyle CD, Kapner DJ, Heckel BR, Adelberger EG, Gundlach JH, Schmidt U, Swanson HE. Sub-millimeter tests of the gravitational inverse-square law. Phys Rev D. 2004;70:042004. https://doi.org/10.1103/PhysRevD.70.042004. arXiv:hep-ph/0405262.

Article
ADS
Google Scholar

Adelberger EG, Heckel BR, Hoedl SA, Hoyle CD, Kapner DJ, Upadhye A. Particle physics implications of a recent test of the gravitational inverse square law. Phys Rev Lett. 2007;98:131104. https://doi.org/10.1103/PhysRevLett.98.131104. arXiv:hep-ph/0611223.

Article
ADS
Google Scholar

Lee JG, Adelberger EG, Cook TS, Fleischer SM, Heckel BR. New test of the gravitational \(1/r^{2}\) law at separations down to 52 *μ*m. Phys Rev Lett. 2020;124(10):101101. https://doi.org/10.1103/PhysRevLett.124.101101. arXiv:2002.11761.

Article
ADS
Google Scholar

Calmet X, Fritzsch H. The cosmological evolution of the nucleon mass and the electroweak coupling constants. Eur Phys J C. 2002;24:639–42. https://doi.org/10.1007/s10052-002-0976-0. arXiv:hep-ph/0112110.

Article
Google Scholar

Calmet X, Fritzsch H. Symmetry breaking and time variation of gauge couplings. Phys Lett B. 2002;540:173–8. https://doi.org/10.1016/S0370-2693(02)02147-0. arXiv:hep-ph/0204258.

Article
ADS
Google Scholar

Calmet X, Fritzsch H. Grand unification and time variation of the gauge couplings. In: 10th international conference on supersymmetry and unification of fundamental interactions (SUSY02). 2002. p. 1301–6. arXiv:hep-ph/0211421.

Google Scholar

Langacker P, Segre G, Strassler MJ. Implications of gauge unification for time variation of the fine structure constant. Phys Lett B. 2002;528:121–8. https://doi.org/10.1016/S0370-2693(02)01189-9. arXiv:hep-ph/0112233.

Article
ADS
Google Scholar

Campbell BA, Olive KA. Nucleosynthesis and the time dependence of fundamental couplings. Phys Lett B. 1995;345:429–34. https://doi.org/10.1016/0370-2693(94)01652-S. arXiv:hep-ph/9411272.

Article
ADS
Google Scholar

Olive KA, Pospelov M, Qian Y-Z, Coc A, Casse M, Vangioni-Flam E. Constraints on the variations of the fundamental couplings. Phys Rev D. 2002;66:045022. https://doi.org/10.1103/PhysRevD.66.045022. arXiv:hep-ph/0205269.

Article
ADS
Google Scholar

Dent T, Fairbairn M. Time varying coupling strengths, nuclear forces and unification. Nucl Phys B. 2003;653:256–78. https://doi.org/10.1016/S0550-3213(03)00043-9. arXiv:hep-ph/0112279.

Article
ADS
Google Scholar

Dent T. Varying alpha, thresholds and extra dimensions. Nucl Phys B. 2004;677:471–84. https://doi.org/10.1016/j.nuclphysb.2003.10.047. arXiv:hep-ph/0305026.

Article
ADS
Google Scholar

Landau SJ, Vucetich H. Testing theories that predict time variation of fundamental constants. Astrophys J. 2002;570:463–9. https://doi.org/10.1086/339775. arXiv:astro-ph/0005316.

Article
ADS
Google Scholar

Wetterich C. Crossover quintessence and cosmological history of fundamental ‘constants’. Phys Lett B. 2003;561:10–6. https://doi.org/10.1016/S0370-2693(03)00383-6. arXiv:hep-ph/0301261.

Article
ADS
MATH
Google Scholar

Flambaum VV, Tedesco AF. Dependence of nuclear magnetic moments on quark masses and limits on temporal variation of fundamental constants from atomic clock experiments. Phys Rev C. 2006;73:055501. https://doi.org/10.1103/PhysRevC.73.055501. arXiv:nucl-th/0601050.

Article
ADS
Google Scholar

Calmet X, Keller M. Cosmological evolution of fundamental constants: from theory to experiment. Mod Phys Lett A. 2015;30(22):1540028. https://doi.org/10.1142/S0217732315400283. arXiv:1410.2765.

Article
ADS
MATH
Google Scholar

Kostelecky VA, Lehnert R, Perry MJ. Spacetime—varying couplings and Lorentz violation. Phys Rev D. 2003;68:123511. https://doi.org/10.1103/PhysRevD.68.123511. arXiv:astro-ph/0212003.

Article
ADS
MathSciNet
Google Scholar

Bertolami O, Lehnert R, Potting R, Ribeiro A. Cosmological acceleration, varying couplings, and Lorentz breaking. Phys Rev D. 2004;69:083513. https://doi.org/10.1103/PhysRevD.69.083513. arXiv:astro-ph/0310344.

Article
ADS
Google Scholar

Ferrero A, Altschul B. Radiatively induced Lorentz and gauge symmetry violation in electrodynamics with varying alpha. Phys Rev D. 2009;80:125010. https://doi.org/10.1103/PhysRevD.80.125010. arXiv:0910.5202.

Article
ADS
MATH
Google Scholar

Kostelecký VA, Russell N. Data tables for Lorentz and CPT violation. 2021 edition. arXiv:0801.0287v14.

Kostelecky A, Potting R. Lorentz symmetry in ghost-free massive gravity. 2021. arXiv:2108.04213.

Flambaum VV, Dzuba VA. Search for variation of the fundamental constants in atomic, molecular, and nuclear spectra. Can J Phys. 2009;87(1):25–33. https://doi.org/10.1139/p08-072.

Article
ADS
Google Scholar

Dzuba VA, Flambaum VV. Highly charged ions for atomic clocks and search for variation of the fine structure constant. In: Wada M, Schury P, Ichikawa Y, editors. TCP 2014. Cham: Springer; 2017. p. 79–86. https://doi.org/10.1007/978-3-319-61588-2-10.

Chapter
Google Scholar

Dzuba VA, Flambaum VV, Webb JK. Space-time variation of physical constants and relativistic corrections in atoms. Phys Rev Lett. 1999;82:888–91. https://doi.org/10.1103/PhysRevLett.82.888.

Article
ADS
Google Scholar

Dzuba VA, Flambaum VV, Webb JK. Calculations of the relativistic effects in many-electron atoms and space-time variation of fundamental constants. Phys Rev A. 1999;59:230–7. https://doi.org/10.1103/PhysRevA.59.230.

Article
ADS
Google Scholar

Holliman CA, Fan M, Contractor A, Brewer SM, Jayich AM. Radium ion optical clock. Phys Rev Lett. 2022;128(3):033202. https://doi.org/10.1103/PhysRevLett.128.033202.

Article
ADS
Google Scholar

Schioppo M et al.. Comparing ultrastable lasers at \(7\times 10^{-17}\) fractional frequency instability through a 2220 km optical fibre network. Nat Commun. 2022;13:212. https://doi.org/10.1038/s41467-021-27884-3.

Article
ADS
Google Scholar

Pustelny S, Jackson Kimball DF, Pankow C, Ledbetter MP, Wlodarczyk P, Wcislo P, Pospelov M, Smith JR, Read J, Gawlik W, Budker D. The global network of optical magnetometers for exotic physics (GNOME): a novel scheme to search for physics beyond the standard model. Ann Phys. 2013;525(8–9):659–70. https://doi.org/10.1002/andp.201300061.

Article
Google Scholar

Calmet X, Fritzsch H. The cosmological evolution of the nucleon mass and the electroweak coupling constants. Eur Phys J C, Part Fields. 2002;24:639–42. https://doi.org/10.1007/s10052-002-0976-0.

Article
Google Scholar

Calmet X, Fritzsch H. Symmetry breaking and time variation of gauge couplings. Phys Lett B. 2002;540(3):173–8. https://doi.org/10.1016/S0370-2693(02)02147-0.

Article
ADS
Google Scholar

Calmet X, Fritzsch H. A time variation of proton–electron mass ratio and grand unification. Europhys Lett. 2006;76(6):1064–7. https://doi.org/10.1209/epl/i2006-10393-0.

Article
ADS
Google Scholar

Kómár P, Kessler EM, Bishof M, Jiang L, Sørensen AS, Ye J, Lukin MD. A quantum network of clocks. Nat Phys. 2014;10(8):582–7. https://doi.org/10.1038/nphys3000.

Article
Google Scholar

Baumgratz T, Datta A. Quantum enhanced estimation of a multidimensional field. Phys Rev Lett. 2016;116:030801. https://doi.org/10.1103/PhysRevLett.116.030801.

Article
ADS
MATH
Google Scholar

Kok P, Dunningham J, Ralph JF. Role of entanglement in calibrating optical quantum gyroscopes. Phys Rev A. 2017;95:012326. https://doi.org/10.1103/PhysRevA.95.012326.

Article
ADS
Google Scholar

Proctor TJ, Knott PA, Dunningham JA. Multiparameter estimation in networked quantum sensors. Phys Rev Lett. 2018;120:080501. https://doi.org/10.1103/PhysRevLett.120.080501.

Article
ADS
Google Scholar

Weyers S, Gerginov V, Kazda M, Rahm J, Lipphardt B, Dobrev G, Gibble K. Advances in the accuracy, stability, and reliability of the PTB primary fountain clocks. Metrologia. 2018;55(6):789–805. https://doi.org/10.1088/1681-7575/aae008.

Article
ADS
Google Scholar

Heavner TP, Donley EA, Levi F, Costanzo G, Parker TE, Shirley JH, Ashby N, Barlow S, Jefferts SR. First accuracy evaluation of NIST-F2. Metrologia. 2014;51(3):174–82. https://doi.org/10.1088/0026-1394/51/3/174.

Article
ADS
Google Scholar

Guéna J, Abgrall M, Rovera D, Laurent P, Chupin B, Lours M, Santarelli G, Rosenbusch P, Tobar M, Ruoxin L, Gibble K, Clairon A, Bize S. Progress in atomic fountains at LNE-SYRTE. IEEE Trans Ultrason Ferroelectr Freq Control. 2012;59:391–410. https://doi.org/10.1109/TUFFC.2012.2208.

Article
Google Scholar

Szymaniec K, Lea SN, Gibble K, Park SE, Liu K, Głowacki P. NPL Cs fountain frequency standards and the quest for the ultimate accuracy. J Phys Conf Ser. 2016;723:012003. https://doi.org/10.1088/1742-6596/723/1/012003.

Article
Google Scholar

Levi F, Calonico D, Calosso CE, Godone A, Micalizio S, Costanzo GA. Accuracy evaluation of ITCsF2: a nitrogen cooled caesium fountain. Metrologia. 2014;51(3):270–84. https://doi.org/10.1088/0026-1394/51/3/270.

Article
ADS
Google Scholar

Bothwell T, Kedar D, Oelker E, Robinson JM, Bromley SL, Tew WL, Ye J, Kennedy CJ. JILA SrI optical lattice clock with uncertainty of \(2.0\times 10^{-18}\). Metrologia. 2019;56(6):065004. https://doi.org/10.1088/1681-7575/ab4089.

Article
ADS
Google Scholar

Sanner C, Huntemann N, Lange R, Tamm C, Peik E, Safronova MS, Porsev SG. Optical clock comparison for Lorentz symmetry testing. Nature. 2019;567(7747):204–8.

Article
ADS
Google Scholar

Kajita M. Precise measurement of transition frequencies of optically trapped \({}^{40}\text{Ca}^{19}\text{F}\) molecules. J Phys Soc Jpn. 2018;87:104301. https://doi.org/10.7566/JPSJ.87.104301.

Article
ADS
Google Scholar

Truppe S, Williams HJ, Fitch NJ, Hambach M, Wall TE, Hinds EA, Sauer BE, Tarbutt MR. An intense, cold, velocity-controlled molecular beam by frequency-chirped laser slowing. New J Phys. 2017;19:022001. https://doi.org/10.1088/1367-2630/aa5ca2.

Article
Google Scholar

Truppe S, Williams HJ, Hambach M, Caldwell L, Fitch NJ, Hinds EA, Sauer BE, Tarbutt MR. Molecules cooled below the Doppler limit. Nat Phys. 2017;13:1173–6. https://doi.org/10.1038/nphys4241.

Article
Google Scholar

Williams HJ, Truppe S, Hambach M, Caldwell L, Fitch NJ, Hinds EA, Sauer BE, Tarbutt MR. Characteristics of a magneto-optical trap of molecules. New J Phys. 2017;19:113035. https://doi.org/10.1088/1367-2630/aa8e52.

Article
Google Scholar

Williams HJ, Caldwell L, Fitch NJ, Truppe S, Rodewald J, Hinds EA, Sauer BE, Tarbutt MR. Magnetic trapping and coherent control of laser-cooled molecules. Phys Rev Lett. 2018;120:163201. https://doi.org/10.1103/PhysRevLett.120.163201.

Article
ADS
Google Scholar

Caldwell L, Devlin JA, Williams HJ, Fitch NJ, Hinds EA, Sauer BE, Tarbutt MR. Deep laser cooling and efficient magnetic compression of molecules. Phys Rev Lett. 2019;123:033202. https://doi.org/10.1103/PhysRevLett.123.033202.

Article
ADS
Google Scholar

Anderegg L, Augenbraun BL, Bao Y, Burchesky S, Cheuk LW, Ketterle W, Doyle JM. Laser cooling of optically trapped molecules. Nat Phys. 2018;14:890–3. https://doi.org/10.1038/s41567-018-0191-z.

Article
Google Scholar

Kajita M, Gopakumar G, Abe M, Hada M, Keller M. Test of \({m}_{p}/{m}_{e}\) changes using vibrational transitions in \({\text{N}_{2}}^{+}\). Phys Rev A. 2014;89:032509. https://doi.org/10.1103/PhysRevA.89.032509.

Article
ADS
Google Scholar

Germann M, Tong X, Willitsch S. Observation of electric-dipole-forbidden infrared transitions in cold molecular ions. Nat Phys. 2014;10(11):820–4. https://doi.org/10.1038/NPHYS3085.

Article
Google Scholar

Peik E, Tamm C. Nuclear laser spectroscopy of the 3.5 eV transition in Th-229. Europhys Lett. 2003;61(2):181–6. https://doi.org/10.1209/epl/i2003-00210-x.

Article
ADS
Google Scholar

Flambaum VV. Enhanced effect of temporal variation of the fine structure constant and the strong interaction in ^{229}Th. Phys Rev Lett. 2006;97:092502. https://doi.org/10.1103/PhysRevLett.97.092502.

Article
ADS
Google Scholar

Berengut JC, Dzuba VA, Flambaum VV. Enhanced laboratory sensitivity to variation of the fine-structure constant using highly charged ions. Phys Rev Lett. 2010;105:120801. https://doi.org/10.1103/PhysRevLett.105.120801.

Article
ADS
Google Scholar

Derevianko A, Dzuba VA, Flambaum VV. Highly charged ions as a basis of optical atomic clockwork of exceptional accuracy. Phys Rev Lett. 2012;109:180801. https://doi.org/10.1103/PhysRevLett.109.180801.

Article
ADS
Google Scholar

Kozlov MG, Safronova MS, Crespo López-Urrutia JR, Schmidt PO. Highly charged ions: optical clocks and applications in fundamental physics. Rev Mod Phys. 2018;90:045005. https://doi.org/10.1103/RevModPhys.90.045005.

Article
ADS
Google Scholar

Schmöger L, Versolato OO, Schwarz M, Kohnen M, Windberger A, Piest B, Feuchtenbeiner S, Pedregosa-Gutierrez J, Leopold T, Micke P, Hansen AK, Baumann TM, Drewsen M, Ullrich J, Schmidt PO, López-Urrutia JRC. Coulomb crystallization of highly charged ions. Science. 2015;347(6227):1233–6. https://doi.org/10.1126/science.aaa2960.

Article
ADS
Google Scholar

Schmoeger L, Schwarz M, Baumann TM, Versolato OO, Piest B, Pfeifer T, Ullrich J, Schmidt PO, Crespo Lopez-Urrutia JR. Deceleration, precooling, and multi-pass stopping of highly charged ions in Be^{+} Coulomb crystals. Rev Sci Instrum. 2015;86(10):103111. https://doi.org/10.1063/1.4934245.

Article
ADS
Google Scholar

Micke P, Leopold T, King SA, Benkler E, Spiess LJ, Schmoeger L, Schwarz M, Lopez-Urrutia JRC, Schmidt PO. Coherent laser spectroscopy of highly charged ions using quantum logic. Nature. 2020;578:60. https://doi.org/10.1038/s41586-020-1959-8.

Article
ADS
Google Scholar

Ludlow AD, Boyd MM, Ye J, Peik E, Schmidt PO. Optical atomic clocks. Rev Mod Phys. 2015;87:637–701. https://doi.org/10.1103/RevModPhys.87.637.

Article
ADS
Google Scholar

Voigt C, Denker H, Timmen L. Time-variable gravity potential components for optical clock comparisons and the definition of international time scales. Metrologia. 2016;53(6):1365–83. https://doi.org/10.1088/0026-1394/53/6/1365.

Article
ADS
Google Scholar

Baudis L. Dark matter searches. Ann Phys. 2016;528(1–2):74–83. https://doi.org/10.1002/andp.201500114.

Article
MathSciNet
Google Scholar

Jaeckel J, Ringwald A. The low-energy frontier of particle physics. Annu Rev Nucl Part Sci. 2010;60(1):405–37. https://doi.org/10.1146/annurev.nucl.012809.104433.

Article
ADS
Google Scholar

Irastorza IG, Redondo J. New experimental approaches in the search for axion-like particles. Prog Part Nucl Phys. 2018;102:89–159. https://doi.org/10.1016/j.ppnp.2018.05.003.

Article
ADS
Google Scholar

Agrawal P, Bauer M, Beacham J, Berlin A, Boyarsky A, Cebrian S, Cid-Vidal X, d’Enterria D, De Roeck A, Drewes M et al.. Feebly-Interacting Particles: FIPs 2020 Workshop Report. Eur Phys J C. 2021;81:1015.

Article
ADS
Google Scholar

Peccei RD, Quinn HR. CP conservation in the presence of instantons. Phys Rev Lett. 1977;38:1440–3. https://doi.org/10.1103/PhysRevLett.38.1440.

Article
ADS
Google Scholar

Peccei RD, Quinn HR. Constraints imposed by CP conservation in the presence of instantons. Phys Rev D. 1977;16:1791–7. https://doi.org/10.1103/PhysRevD.16.1791.

Article
ADS
Google Scholar

Weinberg S. A new light boson? Phys Rev Lett. 1978;40:223–6. https://doi.org/10.1103/PhysRevLett.40.223.

Article
ADS
Google Scholar

Wilczek F. Problem of strong *P* and *T* invariance in the presence of instantons. Phys Rev Lett. 1978;40:279–82. https://doi.org/10.1103/PhysRevLett.40.279.

Article
ADS
Google Scholar

Kim JE. Weak interaction singlet and strong CP invariance. Phys Rev Lett. 1979;43:103. https://doi.org/10.1103/PhysRevLett.43.103.

Article
ADS
Google Scholar

Shifman MA, Vainshtein AI, Zakharov VI. Can confinement ensure natural CP invariance of strong interactions? Nucl Phys B. 1980;166:493–506. https://doi.org/10.1016/0550-3213(80)90209-6.

Article
ADS
MathSciNet
Google Scholar

Zhitnitsky AR. On possible suppression of the axion hadron interactions (in Russian). Sov J Nucl Phys. 1980;31:260.

Google Scholar

Dine M, Fischler W, Srednicki M. A simple solution to the strong CP problem with a harmless axion. Phys Lett B. 1981;104:199–202. https://doi.org/10.1016/0370-2693(81)90590-6.

Article
ADS
Google Scholar

Preskill J, Wise MB, Wilczek F. Cosmology of the invisible axion. Phys Lett B. 1983;120:127–32. https://doi.org/10.1016/0370-2693(83)90637-8.

Article
ADS
Google Scholar

Abbott LF, Sikivie P. A cosmological bound on the invisible axion. Phys Lett B. 1983;120:133–6. https://doi.org/10.1016/0370-2693(83)90638-X.

Article
ADS
Google Scholar

Dine M, Fischler W. The not so harmless axion. Phys Lett B. 1983;120:137–41. https://doi.org/10.1016/0370-2693(83)90639-1.

Article
ADS
Google Scholar

Foster JW, Rodd NL, Safdi BR. Revealing the dark matter halo with axion direct detection. Phys Rev D. 2018;97:123006. https://doi.org/10.1103/PhysRevD.97.123006.

Article
ADS
Google Scholar

Khmelnitsky A, Rubakov V. Pulsar timing signal from ultralight scalar dark matter. J Cosmol Astropart Phys. 2014;2014(02):019. https://doi.org/10.1088/1475-7516/2014/02/019.

Article
MathSciNet
Google Scholar

Porayko NK, Zhu X, Levin Y, Hui L, Hobbs G, Grudskaya A, Postnov K, Bailes M, Bhat NDR, Coles W, Dai S, Dempsey J, Keith MJ, Kerr M, Kramer M, Lasky PD, Manchester RN, Osłowski S, Parthasarathy A, Ravi V, Reardon DJ, Rosado PA, Russell CJ, Shannon RM, Spiewak R, van Straten W, Toomey L, Wang J, Wen L, You X. Parkes pulsar timing array constraints on ultralight scalar-field dark matter. Phys Rev D. 2018;98:102002. https://doi.org/10.1103/PhysRevD.98.102002.

Article
ADS
Google Scholar

Van Tilburg K, Leefer N, Bougas L, Budker D. Search for ultralight scalar dark matter with atomic spectroscopy. Phys Rev Lett. 2015;115:011802. https://doi.org/10.1103/PhysRevLett.115.011802.

Article
ADS
Google Scholar

Hees A, Guéna J, Abgrall M, Bize S, Wolf P. Searching for an oscillating massive scalar field as a dark matter candidate using atomic hyperfine frequency comparisons. Phys Rev Lett. 2016;117:061301. https://doi.org/10.1103/PhysRevLett.117.061301.

Article
ADS
Google Scholar

Stadnik YV, Flambaum VV. Improved limits on interactions of low-mass spin-0 dark matter from atomic clock spectroscopy. Phys Rev A. 2016;94:022111. https://doi.org/10.1103/PhysRevA.94.022111.

Article
ADS
Google Scholar

Stadnik YV, Flambaum VV. Enhanced effects of variation of the fundamental constants in laser interferometers and application to dark-matter detection. Phys Rev A. 2016;93:063630. https://doi.org/10.1103/PhysRevA.93.063630.

Article
ADS
Google Scholar

Kennedy CJ, Oelker E, Robinson JM, Bothwell T, Kedar D, Milner WR, Marti GE, Derevianko A, Ye J. Precision metrology meets cosmology: improved constraints on ultralight dark matter from atom-cavity frequency comparisons. Phys Rev Lett. 2020;125:201302. https://doi.org/10.1103/PhysRevLett.125.201302.

Article
ADS
Google Scholar

Vermeulen SM, Relton P, Grote H, Raymond V, Affeldt C, Bergamin F, Bisht A, Brinkmann M, Danzmann K, Doravari S, Kringel V, Lough J, Lück H, Mehmet M, Mukund N, Nadji S, Schreiber E, Sorazu B, Strain KA, Vahlbruch H, Weinert M, Willke B. Direct limits for scalar field dark matter from a gravitational-wave detector. Nature. 2021;600:424–8.

Article
ADS
Google Scholar

Branca A, Bonaldi M, Cerdonio M, Conti L, Falferi P, Marin F, Mezzena R, Ortolan A, Prodi GA, Taffarello L, Vedovato G, Vinante A, Vitale S, Zendri J-P. Search for an ultralight scalar dark matter candidate with the AURIGA detector. Phys Rev Lett. 2017;118:021302. https://doi.org/10.1103/PhysRevLett.118.021302.

Article
ADS
Google Scholar

Smith GL, Hoyle CD, Gundlach JH, Adelberger EG, Heckel BR, Swanson HE. Short-range tests of the equivalence principle. Phys Rev D. 1999;61:022001. https://doi.org/10.1103/PhysRevD.61.022001.

Article
ADS
Google Scholar

Schlamminger S, Choi K-Y, Wagner TA, Gundlach JH, Adelberger EG. Test of the equivalence principle using a rotating torsion balance. Phys Rev Lett. 2008;100:041101. https://doi.org/10.1103/PhysRevLett.100.041101.

Article
ADS
Google Scholar

Touboul P, Métris G, Rodrigues M, André Y, Baghi Q, Bergé J, Boulanger D, Bremer S, Carle P, Chhun R, Christophe B, Cipolla V, Damour T, Danto P, Dittus H, Fayet P, Foulon B, Gageant C, Guidotti P-Y, Hagedorn D, Hardy E, Huynh P-A, Inchauspe H, Kayser P, Lala S, Lämmerzahl C, Lebat V, Leseur P, Liorzou F, List M, Löffler F, Panet I, Pouilloux B, Prieur P, Rebray A, Reynaud S, Rievers B, Robert A, Selig H, Serron L, Sumner T, Tanguy N, Visser P. MICROSCOPE mission: first results of a space test of the equivalence principle. Phys Rev Lett. 2017;119:231101. https://doi.org/10.1103/PhysRevLett.119.231101.

Article
ADS
Google Scholar

Bergé J, Brax P, Métris G, Pernot-Borràs M, Touboul P, Uzan J-P. MICROSCOPE mission: first constraints on the violation of the weak equivalence principle by a light scalar dilaton. Phys Rev Lett. 2018;120:141101. https://doi.org/10.1103/PhysRevLett.120.141101.

Article
ADS
Google Scholar

Centers GP, Blanchard JW, Conrad J, Figueroa NL, Garcon A, Gramolin AV, Kimball DFJ, Lawson M, Pelssers B, Smiga JA, Sushkov AO, Wickenbrock A, Budker D, Derevianko A. Stochastic fluctuations of bosonic dark matter. Nat Commun. 2021;12:7321.

Article
ADS
Google Scholar

Martin J. Quintessence: a mini-review. Mod Phys Lett A. 2008;23:1252–65. https://doi.org/10.1142/S0217732308027631. arXiv:0803.4076.

Article
ADS
Google Scholar

Wetterich C. An asymptotically vanishing time-dependent cosmological “constant”. Astron Astrophys. 1995;301:321. arXiv:hep-th/9408025.

ADS
Google Scholar

Amendola L. Scaling solutions in general nonminimal coupling theories. Phys Rev D. 1999;60:043501. https://doi.org/10.1103/PhysRevD.60.043501.

Article
ADS
Google Scholar

Amendola L. Coupled quintessence. Phys Rev D. 2000;62:043511. https://doi.org/10.1103/PhysRevD.62.043511.

Article
ADS
Google Scholar

Dvali G, Zaldarriaga M. Changing *α* with time: implications for fifth-force-type experiments and quintessence. Phys Rev Lett. 2002;88:091303. https://doi.org/10.1103/PhysRevLett.88.091303.

Article
ADS
Google Scholar

Chiba T, Kohri K. Quintessence cosmology and varying *α*. Prog Theor Phys. 2002;107(3):631–6. https://doi.org/10.1143/PTP.107.631. https://academic.oup.com/ptp/article-pdf/107/3/631/5121258/107-3-631.pdf.

Article
ADS
MATH
Google Scholar

Damour T, Piazza F, Veneziano G. Runaway dilaton and equivalence principle violations. Phys Rev Lett. 2002;89:081601. https://doi.org/10.1103/PhysRevLett.89.081601.

Article
ADS
Google Scholar

Damour T, Piazza F, Veneziano G. Violations of the equivalence principle in a dilaton-runaway scenario. Phys Rev D. 2002;66:046007. https://doi.org/10.1103/PhysRevD.66.046007.

Article
ADS
MathSciNet
Google Scholar

Wetterich C. Crossover quintessence and cosmological history of fundamental “constants”. Phys Lett B. 2003;561(1):10–6. https://doi.org/10.1016/S0370-2693(03)00383-6.

Article
ADS
MATH
Google Scholar

Anchordoqui L, Goldberg H. Time variation of the fine structure constant driven by quintessence. Phys Rev D. 2003;68:083513. https://doi.org/10.1103/PhysRevD.68.083513.

Article
ADS
Google Scholar

Copeland EJ, Nunes NJ, Pospelov M. Models of quintessence coupled to the electromagnetic field and the cosmological evolution of alpha. Phys Rev D. 2004;69:023501. https://doi.org/10.1103/PhysRevD.69.023501.

Article
ADS
Google Scholar

Lee S, Olive KA, Pospelov M. Quintessence models and the cosmological evolution of *α*. Phys Rev D. 2004;70:083503. https://doi.org/10.1103/PhysRevD.70.083503.

Article
ADS
Google Scholar

Marra V, Rosati F. Cosmological evolution of alpha driven by a general coupling with quintessence. J Cosmol Astropart Phys. 2005;2005(05):011. https://doi.org/10.1088/1475-7516/2005/05/011.

Article
ADS
Google Scholar

Lee S. Time variation of fine structure constant and proton–electron mass ratio with quintessence. Mod Phys Lett A. 2007;22(25n28):2003–11. https://doi.org/10.1142/S0217732307025236.

Article
ADS
Google Scholar

Shlyakhter A. Direct test of the constancy of fundamental nuclear constants. Nature. 1976;264(5584):340.

Article
ADS
Google Scholar

Damour T, Dyson F. The Oklo bound on the time variation of the fine-structure constant revisited. Nucl Phys B. 1996;480(1):37–54. https://doi.org/10.1016/S0550-3213(96)00467-1.

Article
ADS
Google Scholar

Fujii Y, Iwamoto A, Fukahori T, Ohnuki T, Nakagawa M, Hidaka H, Oura Y, Möller P. The nuclear interaction at Oklo 2 billion years ago. Nucl Phys B. 2000;573(1):377–401. https://doi.org/10.1016/S0550-3213(00)00038-9.

Article
ADS
Google Scholar

Petrov YV, Nazarov AI, Onegin MS, Petrov VY, Sakhnovsky EG. Natural nuclear reactor at Oklo and variation of fundamental constants: computation of neutronics of a fresh core. Phys Rev C. 2006;74:064610. https://doi.org/10.1103/PhysRevC.74.064610.

Article
ADS
Google Scholar

Olive KA, Pospelov M, Qian Y-Z, Coc A, Cassé M, Vangioni-Flam E. Constraints on the variations of the fundamental couplings. Phys Rev D. 2002;66:045022. https://doi.org/10.1103/PhysRevD.66.045022.

Article
ADS
Google Scholar

Carroll SM. Quintessence and the rest of the world. Phys Rev Lett. 1998;81:3067–70. https://doi.org/10.1103/PhysRevLett.81.3067. arXiv:astro-ph/9806099.

Article
ADS
Google Scholar

Vilenkin A. Cosmic strings and domain walls. Phys Rep. 1985;121(5):263–315. https://doi.org/10.1016/0370-1573(85)90033-X.

Article
ADS
MathSciNet
MATH
Google Scholar

’t Hooft G. Magnetic monopoles in unified gauge theories. Nucl Phys B. 1974;79(2):276–84. https://doi.org/10.1016/0550-3213(74)90486-6.

Article
ADS
MathSciNet
Google Scholar

Polyakov AM. Particle spectrum in quantum field theory. In: 30 years of the Landau institute—selected papers. Singapore: World Scientific; 1996. p. 540–1.

Chapter
Google Scholar

Abrikosov AA. On the magnetic properties of superconductors of the second group. Sov Phys JETP. 1957;5:1174–82.

Google Scholar

Nielsen HB, Olesen P. Vortex-line models for dual strings. Nucl Phys B. 1973;61:45–61. https://doi.org/10.1016/0550-3213(73)90350-7.

Article
ADS
Google Scholar

Zel’Dovich YB, Kobzarev IY, Okun LB. Cosmological consequences of a spontaneous breakdown of a discrete symmetry. Sov Phys JETP. 1975;40:1.

ADS
Google Scholar

Press WH, Ryden BS, Spergel DN. Dynamical evolution of domain walls in an expanding universe. Astrophys J. 1989;347:590–604.

Article
ADS
Google Scholar

Urrestilla J, Bevis N, Hindmarsh M, Kunz M, Liddle AR. Cosmic microwave anisotropies from BPS semilocal strings. J Cosmol Astropart Phys. 2008;2008(07):010. https://doi.org/10.1088/1475-7516/2008/07/010.

Article
Google Scholar

Friedberg R, Lee TD, Sirlin A. Class of scalar-field soliton solutions in three space dimensions. Phys Rev D. 1976;13:2739–61. https://doi.org/10.1103/PhysRevD.13.2739.

Article
ADS
MathSciNet
Google Scholar

Coleman S. Q-balls. Nucl Phys B. 1985;262(2):263–83. https://doi.org/10.1016/0550-3213(85)90286-X.

Article
ADS
MathSciNet
Google Scholar

Wcisło P, Morzyński P, Bober M, Cygan A, Lisak D, Ciuryło R, Zawada M. Experimental constraint on dark matter detection with optical atomic clocks. Nat Astron. 2016;1(1):1–6.

Google Scholar

Oliveira JCRE, Martins CJAP, Avelino PP. Cosmological evolution of domain wall networks. Phys Rev D. 2005;71:083509. https://doi.org/10.1103/PhysRevD.71.083509.

Article
ADS
Google Scholar

Avelino PP, Martins CJAP, Oliveira JCRE. One-scale model for domain wall network evolution. Phys Rev D. 2005;72:083506. https://doi.org/10.1103/PhysRevD.72.083506.

Article
ADS
Google Scholar

Planck Collaboration, Aghanim, N. Planck 2018 results—VI. Cosmological parameters. Astron Astrophys. 2020;641:6. https://doi.org/10.1051/0004-6361/201833910.

Article
Google Scholar

Kostelecky VA, Samuel S. Spontaneous breaking of Lorentz symmetry in string theory. Phys Rev D. 1989;39:683. https://doi.org/10.1103/PhysRevD.39.683.

Article
ADS
Google Scholar

Kostelecky VA, Potting R. CPT, strings, and meson factories. Phys Rev D. 1995;51:3923–35. https://doi.org/10.1103/PhysRevD.51.3923. arXiv:hep-ph/9501341.

Article
ADS
Google Scholar

Kostelecky VA, Potting R. CPT and strings. Nucl Phys B. 1991;359:545–70. https://doi.org/10.1016/0550-3213(91)90071-5.

Article
ADS
MathSciNet
Google Scholar

Kostelecky VA, Potting R. Expectation values, Lorentz invariance, and CPT in the open bosonic string. Phys Lett B. 1996;381:89–96. https://doi.org/10.1016/0370-2693(96)00589-8. arXiv:hep-th/9605088.

Article
ADS
Google Scholar

Ellis JR, Mavromatos NE, Nanopoulos DV. Derivation of a vacuum refractive index in a stringy space-time foam model. Phys Lett B. 2008;665:412–7. https://doi.org/10.1016/j.physletb.2008.06.029. arXiv:0804.3566.

Article
ADS
MathSciNet
MATH
Google Scholar

Gliozzi F. Dirac–Born–Infeld action from spontaneous breakdown of Lorentz symmetry in brane-world scenarios. Phys Rev D. 2011;84:027702. https://doi.org/10.1103/PhysRevD.84.027702. arXiv:1103.5377.

Article
ADS
Google Scholar

Hashimoto K, Murata M. A landscape in boundary string field theory: new class of solutions with massive state condensation. Prog Theor Exp Phys. 2013;2013:043B01. https://doi.org/10.1093/ptep/ptt010. arXiv:1211.5949.

Article
MATH
Google Scholar

Gambini R, Pullin J. Emergence of stringlike physics from Lorentz invariance in loop quantum gravity. Int J Mod Phys D. 2014;23(12):1442023. https://doi.org/10.1142/S0218271814420231. arXiv:1406.2610.

Article
ADS
Google Scholar

Rovelli C, Speziale S. Lorentz covariance of loop quantum gravity. Phys Rev D. 2011;83:104029. https://doi.org/10.1103/PhysRevD.83.104029. arXiv:1012.1739.

Article
ADS
Google Scholar

Carroll SM, Harvey JA, Kostelecky VA, Lane CD, Okamoto T. Noncommutative field theory and Lorentz violation. Phys Rev Lett. 2001;87:141601. https://doi.org/10.1103/PhysRevLett.87.141601. arXiv:hep-th/0105082.

Article
ADS
MathSciNet
Google Scholar

Carlson CE, Carone CD, Lebed RF. Bounding noncommutative QCD. Phys Lett B. 2001;518:201–6. https://doi.org/10.1016/S0370-2693(01)01045-0. arXiv:hep-ph/0107291.

Article
ADS
MATH
Google Scholar

Calmet X. Space-time symmetries of noncommutative spaces. Phys Rev D. 2005;71:085012. https://doi.org/10.1103/PhysRevD.71.085012. arXiv:hep-th/0411147.

Article
ADS
MathSciNet
Google Scholar

Calmet X. What are the bounds on space-time noncommutativity? Eur Phys J C. 2005;41:269–72. https://doi.org/10.1140/epjc/s2005-02226-9. arXiv:hep-ph/0401097.

Article
ADS
MathSciNet
MATH
Google Scholar

Bailey QG, Lane CD. Relating noncommutative \(\mathrm{SO}(2, 3)_{\bigstar}\) gravity to the Lorentz-violating standard-model extension. Symmetry. 2018;10(10):480. https://doi.org/10.3390/sym10100480. arXiv:1810.05136.

Article
Google Scholar

Carroll SM, Field GB, Jackiw R. Limits on a Lorentz and parity violating modification of electrodynamics. Phys Rev D. 1990;41:1231. https://doi.org/10.1103/PhysRevD.41.1231.

Article
ADS
Google Scholar

Coleman SR, Glashow SL. High-energy tests of Lorentz invariance. Phys Rev D. 1999;59:116008. https://doi.org/10.1103/PhysRevD.59.116008. arXiv:hep-ph/9812418.

Article
ADS
Google Scholar

Kostelecký VA, Li Z. Backgrounds in gravitational effective field theory. Phys Rev D. 2021;103(2):024059. https://doi.org/10.1103/PhysRevD.103.024059. arXiv:2008.12206.

Article
ADS
MathSciNet
Google Scholar

Kostelecký VA, Li Z. Searches for beyond-Riemann gravity. Phys Rev D. 2021;104(4):044054. https://doi.org/10.1103/PhysRevD.104.044054. arXiv:2106.11293.

Article
ADS
MathSciNet
Google Scholar

de Rham C. Massive gravity. Living Rev Relativ. 2014;17:7. https://doi.org/10.12942/lrr-2014-7. arXiv:1401.4173.

Article
ADS
MATH
Google Scholar

Horava P. Quantum gravity at a Lifshitz point. Phys Rev D. 2009;79:084008. https://doi.org/10.1103/PhysRevD.79.084008. arXiv:0901.3775.

Article
ADS
MathSciNet
Google Scholar

Bluhm R, Kostelecky VA. Spontaneous Lorentz violation, Nambu–Goldstone modes, and gravity. Phys Rev D. 2005;71:065008. https://doi.org/10.1103/PhysRevD.71.065008. arXiv:hep-th/0412320.

Article
ADS
Google Scholar

Bluhm R, Fung S-H, Kostelecky VA. Spontaneous Lorentz and diffeomorphism violation, massive modes, and gravity. Phys Rev D. 2008;77:065020. https://doi.org/10.1103/PhysRevD.77.065020. arXiv:0712.4119.

Article
ADS
MathSciNet
Google Scholar

Bluhm R. Explicit versus spontaneous diffeomorphism breaking in gravity. Phys Rev D. 2015;91(6):065034. https://doi.org/10.1103/PhysRevD.91.065034. arXiv:1401.4515.

Article
ADS
MathSciNet
Google Scholar

Weinberg S. Effective field theory, past and future. In: 6th international workshop on chiral dynamics (CD09). PoS. 2009. https://doi.org/10.22323/1.086.0001. 0908.1964.

Chapter
Google Scholar

Colladay D, Kostelecky VA. CPT violation and the standard model. Phys Rev D. 1997;55:6760–74. https://doi.org/10.1103/PhysRevD.55.6760. arXiv:hep-ph/9703464.

Article
ADS
Google Scholar

Colladay D, Kostelecky VA. Lorentz violating extension of the standard model. Phys Rev D. 1998;58:116002. https://doi.org/10.1103/PhysRevD.58.116002. arXiv:hep-ph/9809521.

Article
ADS
Google Scholar

Kostelecky VA. Gravity, Lorentz violation, and the standard model. Phys Rev D. 2004;69:105009. https://doi.org/10.1103/PhysRevD.69.105009. arXiv:hep-th/0312310.

Article
ADS
Google Scholar

Bluhm R. Overview of the SME: implications and phenomenology of Lorentz violation. Lect Notes Phys. 2006;702:191–226. https://doi.org/10.1007/3-540-34523-X_8. arXiv:hep-ph/0506054.

Article
MATH
Google Scholar

Tasson JD. What do we know about Lorentz invariance? Rep Prog Phys. 2014;77:062901. https://doi.org/10.1088/0034-4885/77/6/062901. arXiv:1403.7785.

Article
ADS
MathSciNet
Google Scholar

Kostelecky AV, Tasson JD. Matter-gravity couplings and Lorentz violation. Phys Rev D. 2011;83:016013. https://doi.org/10.1103/PhysRevD.83.016013. arXiv:1006.4106.

Article
ADS
Google Scholar

Mewes M. Non-minimal Lorentz violation in macroscopic matter. Symmetry. 2020;12(12):2026. https://doi.org/10.3390/sym12122026. arXiv:2012.08302.

Article
Google Scholar

Jackiw R, Kostelecky VA. Radiatively induced Lorentz and CPT violation in electrodynamics. Phys Rev Lett. 1999;82:3572–5. https://doi.org/10.1103/PhysRevLett.82.3572. arXiv:hep-ph/9901358.

Article
ADS
Google Scholar

Bluhm R, Kostelecky VA, Russell N. CPT and Lorentz tests in hydrogen and anti-hydrogen. Phys Rev Lett. 1999;82:2254–7. https://doi.org/10.1103/PhysRevLett.82.2254. arXiv:hep-ph/9810269.

Article
ADS
Google Scholar

Kostelecky VA, Lane CD. Constraints on Lorentz violation from clock comparison experiments. Phys Rev D. 1999;60:116010. https://doi.org/10.1103/PhysRevD.60.116010. arXiv:hep-ph/9908504.

Article
ADS
Google Scholar

Bluhm R, Kostelecky VA, Lane CD, Russell N. Clock comparison tests of Lorentz and CPT symmetry in space. Phys Rev Lett. 2002;88:090801. https://doi.org/10.1103/PhysRevLett.88.090801. arXiv:hep-ph/0111141.

Article
ADS
Google Scholar

Kostelecký VA, Vargas AJ. Lorentz and CPT tests with clock-comparison experiments. Phys Rev D. 2018;98(3):036003. https://doi.org/10.1103/PhysRevD.98.036003. arXiv:1805.04499.

Article
ADS
Google Scholar

Vargas AJ. Overview of the phenomenology of Lorentz and CPT violation in atomic systems. Symmetry. 2019;11(12):1433. https://doi.org/10.3390/sym11121433.

Article
Google Scholar

Foldy LL, Wouthuysen SA. On the Dirac theory of spin 1/2 particle and its nonrelativistic limit. Phys Rev. 1950;78:29–36. https://doi.org/10.1103/PhysRev.78.29.

Article
ADS
MATH
Google Scholar

Kostelecky VA, Lane CD. Nonrelativistic quantum Hamiltonian for Lorentz violation. J Math Phys. 1999;40:6245–53. https://doi.org/10.1063/1.533090. arXiv:hep-ph/9909542.

Article
ADS
MathSciNet
MATH
Google Scholar

Hohensee MA, Leefer N, Budker D, Harabati C, Dzuba VA, Flambaum VV. Limits on violations of Lorentz symmetry and the Einstein equivalence principle using radio-frequency spectroscopy of atomic dysprosium. Phys Rev Lett. 2013;111:050401. https://doi.org/10.1103/PhysRevLett.111.050401. arXiv:1303.2747.

Article
ADS
Google Scholar

Hohensee MA, Chu S, Peters A, Muller H. Equivalence principle and gravitational redshift. Phys Rev Lett. 2011;106:151102. https://doi.org/10.1103/PhysRevLett.106.151102. arXiv:1102.4362.

Article
ADS
Google Scholar

Dzuba VA, Flambaum VV, Safronova MS, Porsev SG, Pruttivarasin T, Hohensee MA, Häffner H. Strongly enhanced effects of Lorentz symmetry violation in entangled Yb^{+} ions. 2015. arXiv:1507.06048.

Safronova MS, Johnson WR. All-order methods for relativistic atomic structure calculations. In: Advances in atomic, molecular, and optical physics. vol. 55. San Diego: Academic Press; 2008. p. 191–233. https://doi.org/10.1016/S1049-250X(07)55004-4. https://www.sciencedirect.com/science/article/pii/S1049250X07550044.

Chapter
Google Scholar

Shaniv R, Ozeri R, Safronova MS, Porsev SG, Dzuba VA, Flambaum VV, Häffner H. New methods for testing Lorentz invariance with atomic systems. Phys Rev Lett. 2018;120(10):103202. https://doi.org/10.1103/PhysRevLett.120.103202. arXiv:1712.09514.

Article
ADS
Google Scholar

Dzuba VA, Flambaum VV. Limits on gravitational Einstein equivalence principle violation from monitoring atomic clock frequencies during a year. Phys Rev D. 2017;95(1):015019. https://doi.org/10.1103/PhysRevD.95.015019. arXiv:1608.06050.

Article
ADS
Google Scholar

Pruttivarasin T, Ramm M, Porsev SG, Tupitsyn II, Safronova M, Hohensee MA, Haeffner H. A michelson-Morley test of Lorentz symmetry for electrons. Nature. 2015;517:592. https://doi.org/10.1038/nature14091. arXiv:1412.2194.

Article
ADS
Google Scholar

Harabati C, Dzuba VA, Flambaum VV, Hohensee MA. Effects of Lorentz-symmetry violation on the spectra of rare-Earth ions in a crystal field. Phys Rev A. 2015;92(4):040101. https://doi.org/10.1103/PhysRevA.92.040101. arXiv:1503.01511.

Article
ADS
Google Scholar

Roberts BM, Stadnik YV, Dzuba VA, Flambaum VV, Leefer N, Budker D. Limiting P-odd interactions of cosmic fields with electrons, protons and neutrons. Phys Rev Lett. 2014;113:081601. https://doi.org/10.1103/PhysRevLett.113.081601. arXiv:1404.2723.

Article
ADS
Google Scholar

Roberts BM, Stadnik YV, Dzuba VA, Flambaum VV, Leefer N, Budker D. Parity-violating interactions of cosmic fields with atoms, molecules, and nuclei: concepts and calculations for laboratory searches and extracting limits. Phys Rev D. 2014;90(9):096005. https://doi.org/10.1103/PhysRevD.90.096005. arXiv:1409.2564.

Article
ADS
Google Scholar

Stadnik YV, Flambaum VV. Nuclear spin-dependent interactions: searches for WIMP, axion and topological defect dark matter, and tests of fundamental symmetries. Eur Phys J C. 2015;75(3):110. https://doi.org/10.1140/epjc/s10052-015-3326-8. arXiv:1408.2184.

Article
ADS
Google Scholar

Wolf P, Chapelet F, Bize S, Clairon A. Cold atom clock test of Lorentz invariance in the matter sector. Phys Rev Lett. 2006;96:060801. https://doi.org/10.1103/PhysRevLett.96.060801. arXiv:hep-ph/0601024.

Article
ADS
Google Scholar

Pihan-Le Bars H, Guerlin C, Lasseri RD, Ebran JP, Bailey QG, Bize S, Khan E, Wolf P. Lorentz-symmetry test at Planck-scale suppression with nucleons in a spin-polarized ^{133}Cs cold atom clock. Phys Rev D. 2017;95(7):075026. https://doi.org/10.1103/PhysRevD.95.075026. arXiv:1612.07390.

Article
ADS
Google Scholar

Bars HP-L, Guerlin C, Bailey QG, Bize S, Wolf P. Improved tests of Lorentz invariance in the matter sector using atomic clocks. 2017. arXiv:1701.06902.

Sanner C, Huntemann N, Lange R, Tamm C, Peik E, Safronova MS, Porsev SG. Optical clock comparison for Lorentz symmetry testing. Nature. 2019;567(7747):204–8. https://doi.org/10.1038/s41586-019-0972-2. arXiv:1809.10742.

Article
ADS
Google Scholar

Kostelecký VA. CPT and Lorentz symmetry. Singapore: World Scientific; 1999. https://doi.org/10.1142/4147.

Book
Google Scholar

Hunter L, et al. In Ref. [225], CPT and Lorentz symmetry.

Kostelecký VA. CPT and Lorentz symmetry IV. Singapore: World Scientific; 2008. https://doi.org/10.1142/6678.

Book
Google Scholar

Kornack TW, Vasilakis G, Romalis MV. In Ref. [227], CPT and Lorentz symmetry IV.

Berglund CJ, Hunter LR, Krause JD, Prigge EO, Ronfeldt MS, Lamoreaux SK. New limits on local Lorentz invariance from Hg and Cs magnetometers. Phys Rev Lett. 1995;75:1879–82. https://doi.org/10.1103/PhysRevLett.75.1879.

Article
ADS
Google Scholar

Megidish E, Broz J, Greene N, Häffner H. Improved test of local Lorentz invariance from a deterministic preparation of entangled states. Phys Rev Lett. 2019;122(12):123605. https://doi.org/10.1103/PhysRevLett.122.123605. arXiv:1809.09807.

Article
ADS
Google Scholar

Botermann B et al.. Test of time dilation using stored Li^{+} ions as clocks at relativistic speed. Phys Rev Lett. 2014;113(12):120405. https://doi.org/10.1103/PhysRevLett.113.120405. [Erratum: Phys Rev Lett. 2015;114:239902]. arXiv:1409.7951.

Article
ADS
Google Scholar

Matveev A et al.. Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link. Phys Rev Lett. 2013;110(23):230801. https://doi.org/10.1103/PhysRevLett.110.230801.

Article
ADS
Google Scholar

Muller H, Herrmann S, Saenz A, Peters A, Lammerzahl C. Optical cavity tests of Lorentz invariance for the electron. Phys Rev D. 2003;68:116006. https://doi.org/10.1103/PhysRevD.68.116006. arXiv:hep-ph/0401016.

Article
ADS
Google Scholar

Muller H. Testing Lorentz invariance by use of vacuum and matter filled cavity resonators. Phys Rev D. 2005;71:045004. https://doi.org/10.1103/PhysRevD.71.045004. arXiv:hep-ph/0412385.

Article
ADS
Google Scholar

Muller H, Stanwix PL, Tobar ME, Ivanov E, Wolf P, Herrmann S, Senger A, Kovalchuk E, Peters A. Relativity tests by complementary rotating Michelson–Morley experiments. Phys Rev Lett. 2007;99:050401. https://doi.org/10.1103/PhysRevLett.99.050401. arXiv:0706.2031.

Article
ADS
Google Scholar

Peck SK, Kim DK, Stein D, Orbaker D, Foss A, Hummon MT, Hunter LR. Limits on local Lorentz invariance in mercury and cesium. Phys Rev A. 2012;86:012109. https://doi.org/10.1103/PhysRevA.86.012109. arXiv:1205.5022.

Article
ADS
Google Scholar

Brown JM, Smullin SJ, Kornack TW, Romalis MV. New limit on Lorentz and CPT-violating neutron spin interactions. Phys Rev Lett. 2010;105:151604. https://doi.org/10.1103/PhysRevLett.105.151604. arXiv:1006.5425.

Article
ADS
Google Scholar

Humphrey MA, Phillips DF, Mattison EM, Vessot RFC, Stoner RE, Walsworth RL. Testing Lorentz and CPT symmetry with hydrogen masers. Phys Rev A. 2003;68:063807. https://doi.org/10.1103/PhysRevA.68.063807. arXiv:physics/0103068.

Article
ADS
Google Scholar

Phillips DF, Humphrey MA, Mattison EM, Stoner RE, Vessot RFC, Walsworth RL. Limit on Lorentz and CPT violation of the proton using a hydrogen maser. Phys Rev D. 2001;63:111101. https://doi.org/10.1103/PhysRevD.63.111101. arXiv:physics/0008230.

Article
ADS
Google Scholar

Smiciklas M, Brown JM, Cheuk LW, Romalis MV. A new test of local Lorentz invariance using \({}^{21}\text{Ne}\text{--}\text{Rb}\text{--}\text{K}\) comagnetometer. Phys Rev Lett. 2011;107:171604. https://doi.org/10.1103/PhysRevLett.107.171604. arXiv:1106.0738.

Article
ADS
Google Scholar

Flambaum VV, Romalis MV. Effects of the Lorentz invariance violation on Coulomb interaction in nuclei and atoms. Phys Rev Lett. 2017;118(14):142501. https://doi.org/10.1103/PhysRevLett.118.142501. [Addendum: Phys Rev Lett. 2017;118:169905]. arXiv:1610.08188.

Article
ADS
Google Scholar

Flambaum VV. Enhancing the effect of Lorentz invariance and Einstein’s equivalence principle violation in nuclei and atoms. Phys Rev Lett. 2016;117(7):072501. https://doi.org/10.1103/PhysRevLett.117.072501. arXiv:1603.05753.

Article
ADS
Google Scholar

Allmendinger F, Heil W, Karpuk S, Kilian W, Scharth A, Schmidt U, Schnabel A, Sobolev Y, Tullney K. New limit on Lorentz-invariance- and CPT-violating neutron spin interactions using a free-spin-precession \({}^{3}\text{He}--{}^{129}\text{Xe}\) comagnetometer. Phys Rev Lett. 2014;112(11):110801. https://doi.org/10.1103/PhysRevLett.112.110801. arXiv:1312.3225.

Article
ADS
Google Scholar

Gemmel C et al.. Limit on Lorentz and CPT violation of the bound neutron using a free precession \({}^{3}\text{He}/{}^{129}\text{Xe}\) co-magnetometer. Phys Rev D. 2010;82:111901. arXiv:1011.2143.

Article
ADS
Google Scholar

Tullney K et al.. Test of Lorentz symmetry by using a \({}^{3}\text{He}/{}^{129}\text{Xe}\) co-magnetometer. In: CPT and Lorentz symmetry. 2010. https://doi.org/10.1142/9789814327688_0042.

Chapter
Google Scholar

Altarev I et al.. Test of Lorentz invariance with spin precession of ultracold neutrons. Phys Rev Lett. 2009;103:081602. https://doi.org/10.1103/PhysRevLett.103.081602. arXiv:0905.3221.

Article
ADS
Google Scholar

Flambaum V, Lambert S, Pospelov M. Scalar-tensor theories with pseudoscalar couplings. Phys Rev D. 2009;80:105021. https://doi.org/10.1103/PhysRevD.80.105021. arXiv:0902.3217.

Article
ADS
Google Scholar

Altschul B. Disentangling forms of Lorentz violation with complementary clock comparison experiments. Phys Rev D. 2009;79:061702. https://doi.org/10.1103/PhysRevD.79.061702. arXiv:0901.1870.

Article
ADS
Google Scholar

Cane F, Bear D, Phillips DF, Rosen MS, Smallwood CL, Stoner RE, Walsworth RL, Kostelecky VA. Bound on Lorentz and CPT violating boost effects for the neutron. Phys Rev Lett. 2004;93:230801. https://doi.org/10.1103/PhysRevLett.93.230801. arXiv:physics/0309070.

Article
ADS
Google Scholar

Kostelecký VA, Vargas AJ. Lorentz and CPT tests with hydrogen, antihydrogen, and related systems. Phys Rev D. 2015;92(5):056002. https://doi.org/10.1103/PhysRevD.92.056002. arXiv:1506.01706.

Article
ADS
Google Scholar

Fritzsch H, Minkowski P. Unified interactions of leptons and hadrons. Ann Phys. 1975;93:193–266. https://doi.org/10.1016/0003-4916(75)90211-0.

Article
ADS
MathSciNet
Google Scholar

Georgi H, Glashow SL. Unity of all elementary particle forces. Phys Rev Lett. 1974;32:438–41. https://doi.org/10.1103/PhysRevLett.32.438.

Article
ADS
Google Scholar

Calmet X. Cosmological evolution of the Higgs boson’s vacuum expectation value. Eur Phys J C. 2017;77(11):729. https://doi.org/10.1140/epjc/s10052-017-5324-5. arXiv:1707.06922.

Article
ADS
Google Scholar

Calmet X, Fritzsch H. A time variation of proton–electron mass ratio and grand unification. Europhys Lett. 2006;76:1064–7. https://doi.org/10.1209/epl/i2006-10393-0. arXiv:astro-ph/0605232.

Article
ADS
Google Scholar

Holman R, Hsu SDH, Kephart TW, Kolb EW, Watkins R, Widrow LM. Solutions to the strong CP problem in a world with gravity. Phys Lett B. 1992;282:132–6. https://doi.org/10.1016/0370-2693(92)90491-L. arXiv:hep-ph/9203206.

Article
ADS
Google Scholar

Barr SM, Seckel D. Planck scale corrections to axion models. Phys Rev D. 1992;46:539–49. https://doi.org/10.1103/PhysRevD.46.539.

Article
ADS
Google Scholar

Kallosh R, Linde AD, Linde DA, Susskind L. Gravity and global symmetries. Phys Rev D. 1995;52:912–35. https://doi.org/10.1103/PhysRevD.52.912. arXiv:hep-th/9502069.

Article
ADS
MathSciNet
Google Scholar

Perry MJ. Tp inversion in quantum gravity. Phys Rev D. 1979;19:1720. https://doi.org/10.1103/PhysRevD.19.1720.

Article
ADS
MathSciNet
Google Scholar

Gilbert G. Wormhole-induced proton decay. Nucl Phys B. 1989;328:159–70. https://doi.org/10.1016/0550-3213(89)90097-7.

Article
ADS
Google Scholar

Chen Z, Kobakhidze A. Coloured gravitational instantons, the strong CP problem and the companion axion solution. 2021. arXiv:2108.05549.

Ushijima I, Takamoto M, Das M, Ohkubo T, Katori H. Cryogenic optical lattice clocks. Nat Photonics. 2015;9:185–9. https://doi.org/10.1038/nphoton.2015.5.

Article
ADS
Google Scholar

Hobson R, Bowden W, Vianello A, Silva A, Baynham CFA, Margolis HS, Baird PEG, Gill P, Hill IR. A strontium optical lattice clock with \(1 \times 10^{-17}\) uncertainty and measurement of its absolute frequency. Metrologia. 2020;57(6):065026. https://doi.org/10.1088/1681-7575/abb530.

Article
ADS
Google Scholar

Ushijima I, Takamoto M, Katori H. Operational magic intensity for Sr optical lattice clocks. Phys Rev Lett. 2018;121:263202. https://doi.org/10.1103/PhysRevLett.121.263202.

Article
ADS
Google Scholar

Nisbet-Jones PBR, King SA, Jones JM, Godun RM, Baynham CFA, Bongs K, Doležal M, Balling P, Gill P. A single-ion trap with minimized ion–environment interactions. Appl Phys B. 2016;122(3):57. https://doi.org/10.1007/s00340-016-6327-x.

Article
ADS
Google Scholar

Fitch NJ, Tarbutt MR. Laser cooled molecules. Adv At Mol Opt Phys. 2021;70:157–262.

Article
ADS
Google Scholar

Karthikeyan B, Shanmugapriya G, Rajamanickam N. Radiative transition probabilities, lifetimes and the vibrational temperature for the astrophysical molecule CaF. New Astron. 2017;57:63–9.

Article
ADS
Google Scholar

Blackmore JA, Caldwell L, Gregory PD, Bridge EM, Sawant R, Aldegunde J, Mur-Petit J, Jaksch D, Hutson JM, Sauer BE, Tarbutt MR, Cornish SL. Ultracold molecules for quantum simulation: rotational coherences in CaF and RbCs. Quantum Sci Technol. 2019;4:014010. https://doi.org/10.1088/2058-9565/aaee35.

Article
ADS
Google Scholar

Caldwell L, Williams HJ, Fitch NJ, Aldegunde J, Hutson JM, Sauer BE, Tarbutt MR. Long rotational coherence times of molecules in a magnetic trap. Phys Rev Lett. 2020;124:063001. https://doi.org/10.1103/PhysRevLett.124.063001.

Article
ADS
Google Scholar

Childs WJ, Goodman GL, Goodman LS. Precise determination of the *v* and *N* dependence of the spin-rotation and hyperfine interactions in the CaF \(\text{X}^{2}\Sigma _{1/2}\) ground state. J Mol Spectrosc. 1981;86:365.

Article
ADS
Google Scholar

Huntemann N, Lipphardt B, Okhapkin M, Tamm C, Peik E, Taichenachev AV, Yudin VI. Generalized Ramsey excitation scheme with suppressed light shift. Phys Rev Lett. 2012;109:213002. https://doi.org/10.1103/PhysRevLett.109.213002.

Article
ADS
Google Scholar

Huntemann N, Sanner C, Lipphardt B, Tamm C, Peik E. Single-ion atomic clock with \(3\times 10^{- 18}\) systematic uncertainty. Phys Rev Lett. 2016;116:063001. https://doi.org/10.1103/PhysRevLett.116.063001.

Article
ADS
Google Scholar

Rosenband T, Hume D, Chou C-W, Leibrandt D, Thorpe M, Wineland D. Trapped-ion state detection through coherent motion (107). 2011.

Sinhal M, Meir Z, Najafian K, Hegi G, Willitsch S. Quantum-nondemolition state detection and spectroscopy of single trapped molecules. Science. 2020;367(6483):1213–8. https://doi.org/10.1126/science.aaz9837. https://science.sciencemag.org/content/367/6483/1213.full.pdf.

Article
ADS
Google Scholar

Wolf F, Wan Y, Heip JC, Gebert F, Shi C, Schmidt PO. Non-destructive state detection for quantum logic spectroscopy of molecular ions. Nature. 2016;530(7591):457. https://doi.org/10.1038/nature16513.

Article
ADS
Google Scholar

Chou C-W, Kurz C, Hume D, Plessow P, Leibrandt D, Leibfried D. Preparation and coherent manipulation of pure quantum states of a single molecular ion. Nature. 2017;545:203–7.

Article
ADS
Google Scholar

Gardner A, Softley T, Keller M. Multi-photon ionisation spectroscopy for rotational state preparation of \(\text{N}_{2}^{+}\). Sci Rep. 2019;9:506. https://doi.org/10.1038/s41598-018-36783-5.

Article
ADS
Google Scholar

Khlopov MY, Malomed BA, Zeldovich YB. Gravitational instability of scalar fields and formation of primordial black holes. Mon Not R Astron Soc. 1985;215(4):575–89. https://doi.org/10.1093/mnras/215.4.575. https://academic.oup.com/mnras/article-pdf/215/4/575/4082842/mnras215-0575.pdf.

Article
ADS
Google Scholar

Hu W, Barkana R, Gruzinov A. Fuzzy cold dark matter: the wave properties of ultralight particles. Phys Rev Lett. 2000;85:1158–61. https://doi.org/10.1103/PhysRevLett.85.1158.

Article
ADS
Google Scholar

Iršič V, Viel M, Haehnelt MG, Bolton JS, Becker GD. First constraints on fuzzy dark matter from Lyman-*α* forest data and hydrodynamical simulations. Phys Rev Lett. 2017;119:031302. https://doi.org/10.1103/PhysRevLett.119.031302.

Article
ADS
Google Scholar

Nori M, Murgia R, Iršič V, Baldi M, Viel M. Lyman *α* forest and non-linear structure characterization in fuzzy dark matter cosmologies. Mon Not R Astron Soc. 2018;482(3):3227–43. https://doi.org/10.1093/mnras/sty2888. https://academic.oup.com/mnras/article-pdf/482/3/3227/26653692/sty2888.pdf.

Article
ADS
Google Scholar

Marsh DJE, Niemeyer JC. Strong constraints on fuzzy dark matter from ultrafaint dwarf galaxy eridanus II. Phys Rev Lett. 2019;123:051103. https://doi.org/10.1103/PhysRevLett.123.051103.

Article
ADS
Google Scholar

Schutz K. Subhalo mass function and ultralight bosonic dark matter. Phys Rev D. 2020;101:123026. https://doi.org/10.1103/PhysRevD.101.123026.

Article
ADS
Google Scholar

Iocco F, Pato M, Bertone G. Evidence for dark matter in the inner Milky Way. Nat Phys. 2015;11(3):245–8.

Article
Google Scholar

Karukes EV, Benito M, Iocco F, Trotta R, Geringer-Sameth A. Bayesian reconstruction of the Milky Way dark matter distribution. J Cosmol Astropart Phys. 2019;2019(09):046.

Article
MathSciNet
Google Scholar

Bailey QG, Kostelecky VA. Lorentz-violating electrostatics and magnetostatics. Phys Rev D. 2004;70:076006. https://doi.org/10.1103/PhysRevD.70.076006. arXiv:hep-ph/0407252.

Article
ADS
Google Scholar

Kostelecky VA, Mewes M. Signals for Lorentz violation in electrodynamics. Phys Rev D. 2002;66:056005. https://doi.org/10.1103/PhysRevD.66.056005. arXiv:hep-ph/0205211.

Article
ADS
Google Scholar

Bluhm R, Kostelecky VA, Lane CD, Russell N. Probing Lorentz and CPT violation with space based experiments. Phys Rev D. 2003;68:125008. https://doi.org/10.1103/PhysRevD.68.125008. arXiv:hep-ph/0306190.

Article
ADS
Google Scholar

Kostelecký VA, Melissinos AC, Mewes M. Searching for photon-sector Lorentz violation using gravitational-wave detectors. Phys Lett B. 2016;761:1–7. https://doi.org/10.1016/j.physletb.2016.08.001. arXiv:1608.02592.

Article
ADS
Google Scholar